Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M K
a) Ta có: AN = NB = 1/2AB (gt)
AM = MC = 1/2AC (gt)
mà AB = AC (gt)
=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN
có: AM = AN (gt)
\(\widehat{A}\): chung
AB = AC (gt)
=> tam giác ABM = tam giác ACN (c.g.c)
b) Ta có: AN = NB (gt)
AM = MC (gt)
=> NM là đường trung bình của tam giác ABC
=> MN // BC
c) Ta có: tam giác ABM = tam giác ACN (cmt)
=> \(\widehat{ABM}=\widehat{ACN}\)
Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
\(\widehat{B}=\widehat{C}\) (gt)
=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC
Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC
=> KD \(\equiv\)AD => A, K, D thẳng hàng
a, Xét \(\Delta ABM\)và \(\Delta CAN\) có
AB = AC ( \(\Delta\)cân )
\(\widehat{A}\) chung
AN = AM
\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)
Câu d nè bạn ( Bạn tự vẽ hình ra nhé)
Gọc O là giao điểm của AH và BC. Ta chứng minh được tam giác BKO = tam giác CKO => BK=CK
Ta có KI+KC=KI+BK ( vì BK=KC)
= BI
Tam giác ABI ta có bất đẳng thức tam giác sau AI+AB>BI hay AI+AC>KI+KC
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)