K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Làm tương tự nha ;))))

https://olm.vn//?g=bookstore.testbook&id=330 

14 tháng 2 2016

vẽ hình đi bạn

14 tháng 2 2016

400 duyệt đi

6 tháng 3 2023

a) Xét ΔABMΔ��� có :

ˆMAB=ˆMBA(gt)���^=���^(��)

=> ΔABMΔ��� cân tại M

Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)

=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�

Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^

=> 90o=30o−ˆMAC90�=30�−���^

=> ˆMAC=90o−60o���^=90�−60�

=> ˆMAC=60o���^=60�

b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)

=> 120o+ˆAMC=180o120�+���^=180�

=> ˆAMC=180o−120o���^=180�−120�

=> ˆAMC=60o���^=60�

Xét ΔAMCΔ��� có :

ˆMAC=ˆAMC(=60o)���^=���^(=60�)

=> ΔAMCΔ��� cân tại A

Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)

=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�

Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�

Do đó ΔAMCΔ��� là tam giác đều (đpcm)

- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)

=> BM=AM��=�� (tính chất tam giác cân)

Mà có : ΔAMCΔ��� cân tại M (cmt)

=> AM=MC��=�� (tính chất tam giác cân) (2)

- Từ (1) và (2) => BM=MC(=AC)��=��(=��)

Mà : BM=12BC��=12��

Do vậy : AC=12BC

a: Xét ΔMAB có góc MAB=góc MBA

nên ΔMAB cân tại M

=>góc AMB=180-2*30=120 độ và góc MAC=90-30=60 độ

b: Xét ΔMAC có góc MAC=góc MCA=60 độ

nên ΔMAC đều

2 tháng 7 2020

A B C M I

Lấy điểm I nằm ngoài tam giác ABC sao cho tam giác IBC đều

Vì tam giác ABC vuông cân tại A \(\Rightarrow\)\(\widehat{ABC}=45^0\)

Ta có: \(\widehat{ABM}+\widehat{MBC}=\widehat{ABC}\)

=> \(30^0+\widehat{MBC}=45^0\)

=> \(\widehat{MBC}=45^0-30^0\)

=> \(\widehat{MBC}=15^0\)

Vì tam giác IBC đều \(\Rightarrow\)\(\widehat{IBC}=\widehat{BIC}=60^0\)

Ta có: \(\widehat{IBA}+\widehat{ABC}=\widehat{IBC}\)

=>\(\widehat{IBA}+45^0=60^0\)

=> \(\widehat{IBA}=60^0-45^0\)

=. \(\widehat{IBA}=15^0\)

Xét tam giác ABI và tam giác ACI có;

AB = AC ( tg ABC vuông cân tại A)

IB = IC ( tg IBC đều)

IA chung

Do đó tam giác ABI = tam giác ACI ( c-c-c)

=> \(\widehat{AIB}=\widehat{AIC}\)( 2 góc tương ứng)

=> IA là tia phân giác của \(\widehat{BIC}\)

=> \(\widehat{AIB}=\widehat{AIC}=\frac{\widehat{BIC}}{2}=\frac{60^o}{2}=30^o\)

Xét tam giác ABI  và tam giác MBC có:

\(\widehat{ABI}=\widehat{MBC}=15^o\)

BI = BC (tg IBC đều)

\(\widehat{AIB}=\widehat{MCB}=30^o\)

Do đó tam giác ABI = tam giác MBC (g-c-g)

=> BA = BM (2 cạnh tương ứng)