K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

a, Vì AE=2AB

=>AE/AB=1/2

suy ra: A là trọng tâm của tam giác CDE

b,Gọi F là trung điểm của DE

=>CF là trung tuyến của tam giác CDE

mà A là trọng tâm của tam giác CDE

suy ra:C;A;F thẳng hàng

=>CA đi qua trung điểm của DE

=>đpcm

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE

 

26 tháng 3 2020

Hình tự vẽ nhá

a) +) Xét ΔABD có

BA = BD ( gt)

⇒ Δ ABD cân tại B

+) Xét Δ BHA vuông tại H và Δ BHD vuông tại H có

BA = BD ( gt)

BH: cạnh chung

⇒ ΔBHA = Δ BHD (ch-cgv)

b)+) Ta có \(\left\{{}\begin{matrix}BA=BD\\AE=DC\end{matrix}\right.\)

⇒ BA + AE = BD + DC

⇒ BE = BC
+) Xét Δ BED và ΔBCA có

BE = BC ( cmt)
\(\widehat{ABC}\) : góc chung

BD = BA ( gt)
⇒ ΔDBE = ΔABC (c-g-c)

Lần sau vt đề hẳn hoi ra nhá bạn ơi~~~~

Học tốt ~~~
## Chiyuki Fujito