K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK (2 cạnh tương ứng)

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó:ΔABM=ΔACN

b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có

MB=NC

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHMB=ΔKNC

Suy ra: BH=CK

c: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

BH=CK

Do đó:ΔABH=ΔACK

Suy ra:  AH=AK

Xét ΔAMN có AH/AM=AK/AN

nên HK//MN

hay HK//BC

d: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2022

Cám ơn nhiều ạ!

a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)(ΔABM=ΔACN)

Do đó: ΔAHB=ΔAKC

=>HB=KC và AH=AK

c: Sửa đề: HB cắt KC tại O

Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

HB=KC

Do đó: ΔHBM=ΔKCN

=>\(\widehat{HBM}=\widehat{KCN}\)

Ta có: \(\widehat{HBM}=\widehat{KCN}\)

\(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)

\(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)

Do đó: \(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC

Xét ΔABO và ΔACO có

AO chung

AB=AC

BO=CO

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

c: Ta có: ΔABH=ΔACK

nên AH=AK

d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{OBC}\)

và \(\widehat{KCN}=\widehat{OCB}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

a: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

21 tháng 1 2022

seo nói cj Lam như vậy

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

loading...  loading...  

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

b: Xét ΔAMN có 

AH/AM=AK/AN

nên HK//MN

hay KH//BC

29 tháng 12 2023

a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góckề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

\(\widehat{BME}=\widehat{CNF}\)(ΔABM=ΔACN)

Do đó: ΔBME=ΔCNF

c: Ta có: ΔBME=ΔCNF

=>ME=NF

Ta có: AE+EM=AM

AF+FN=AN

mà AM=AN và ME=NF

nên AE=AF

Xét ΔAEO vuông tại E và ΔAFO vuông tại F có

AO chung

AE=AF

Do đó: ΔAEO=ΔAFO

=>\(\widehat{EAO}=\widehat{FAO}\)

=>\(\widehat{MAO}=\widehat{NAO}\)

=>AO là phân giác của góc MAN

d: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

AM=AN

Do đó: ΔAMH=ΔANH

=>\(\widehat{MAH}=\widehat{NAH}\)

=>AH là phân giác của góc MAN

mà AO là phân giác của góc MAN

nên A,O,H thẳng hàng

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha