Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đừng xem chùa T_T
ủng hộ tôi bằng cách liike ik mờ
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE(gt)
=> △ABD = △ACE (c.g.c)
b, Xét △AHD vuông tại H và △AIE vuông tại I
Có: AD = AE (△ABD = △ACE)
HAD = IAE (△ABD = △ACE)
=> △AHD = △AIE (ch-gn)
=> HD = IE (2 cạnh tương ứng)
c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHI = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HI // BC (dhnb)
d, Gọi { O } = HD
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE(gt)
=> △ABD = △ACE (c.g.c)
b, Xét △AHD vuông tại H và △AIE vuông tại I
Có: AD = AE (△ABD = △ACE)
HAD = IAE (△ABD = △ACE)
=> △AHD = △AIE (ch-gn)
=> HD = IE (2 cạnh tương ứng)
c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHI = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HI // BC (dhnb)
d, Gọi { O } = HD ∩ EI
Xét △BAM và △CAM
Có: AB = AC (cmt)
MB = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
Mà AM nằm giữa AB, AC
=> AM là phân giác của BAC
Xét △HAO vuông tại H và △IAO vuông tại I
Có: AH = AI (cmt)
AO là cạnh chung
=> △HAO = △IAO (ch-cgv)
=> HAO = IAO (2 góc tương ứng)
=> AO là phân giác của BAC
Mà AM là phân giác của BAC
=> AO ≡ AM
=> 3 điểm A, M, O thẳng hàng
=> Ba đường thẳng AM, DH, EI cắt nhau tại một điểm.
Xét \(\Delta ADB\) và \(\Delta AEC:\)
- AB = AC (Tam giác ABC cân ở A).
- \(\widehat{B}=\widehat{C}\) (Tam giác ABC cân ở A).
- BD = CE (gt).
\(\Rightarrow\) \(\Delta ADB\) \(=\Delta ADB\left(c-g-c\right).\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
b: Ta có: ΔADB=ΔAEC
nên BD=CE
Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có
BC chung
CE=BD
Do đó:ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên BC=2EM
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
ˆBADBAD^ chung
Do đó: ΔADB=ΔAEC
b: Ta có: ΔADB=ΔAEC
nên BD=CE
Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có
BC chung
CE=BD
Do đó:ΔEBC=ΔDCB
Suy ra: ˆOCB=ˆOBCOCB^=OBC^
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên BC=2EM
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)
đề của mk có thêm câu d) mk cho nếu cần thì bn lấy nhá
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE(gt)
=> △ABD = △ACE (c.g.c)
b, Xét △AHD vuông tại H và △AIE vuông tại I
Có: AD = AE (△ABD = △ACE)
HAD = IAE (△ABD = △ACE)
=> △AHD = △AIE (ch-gn)
=> HD = IE (2 cạnh tương ứng)
c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHI = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HI // BC (dhnb)
d, Gọi { O } = HD ∩ EI
Xét △BAM và △CAM
Có: AB = AC (cmt)
MB = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
Mà AM nằm giữa AB, AC
=> AM là phân giác của BAC
Xét △HAO vuông tại H và △IAO vuông tại I
Có: AH = AI (cmt)
AO là cạnh chung
=> △HAO = △IAO (ch-cgv)
=> HAO = IAO (2 góc tương ứng)
=> AO là phân giác của BAC
Mà AM là phân giác của BAC
=> AO ≡ AM
=> 3 điểm A, M, O thẳng hàng
=> Ba đường thẳng AM, DH, EI cắt nhau tại một điểm.
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE(gt)
=> △ABD = △ACE (c.g.c)
b, Xét △AHD vuông tại H và △AIE vuông tại I
Có: AD = AE (△ABD = △ACE)
HAD = IAE (△ABD = △ACE)
=> △AHD = △AIE (ch-gn)
=> HD = IE (2 cạnh tương ứng)
c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHI = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HI // BC (dhnb)
d, Gọi { O } = HD ∩ EI
Xét △BAM và △CAM
Có: AB = AC (cmt)
MB = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
Mà AM nằm giữa AB, AC
=> AM là phân giác của BAC
Xét △HAO vuông tại H và △IAO vuông tại I
Có: AH = AI (cmt)
AO là cạnh chung
=> △HAO = △IAO (ch-cgv)
=> HAO = IAO (2 góc tương ứng)
=> AO là phân giác của BAC
Mà AM là phân giác của BAC
=> AO ≡ AM
=> 3 điểm A, M, O thẳng hàng
=> Ba đường thẳng AM, DH, EI cắt nhau tại một điểm.