Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ dàng chứng minh \(\Delta ABN=\Delta ACM\left(c.c.c\right)\)
Suy ra AM = AN. Mặt khác tam giác giác ABC cân tại A có AH là đường trung tuyến xuất phát từ đỉnh nên AH cũng là đường trung trực. Do đó \(AH\perp BC\)
b)Do H là trung điểm BC nên HB = BC/ 2 = 3
Mặt khác BM = MN = NC và BM + MN + NC = BC nên suy ra BM = BC/3 = 2
Mà ta có HM = BH - BM = 3 - 2 = 1 (1)
Áp dụng định lí Pythagoras vào tam giác AHB vuông tại H (Chứng minh trên) suy ra \(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\) (2)
Từ (1) và (2) áp dụng định lí Pythagoras vào tam giác AHM vuông tại H sẽ suy ra AM.
c) Mình thấy nó sao sao ý. Vẽ hình ra 3 góc đó bằng nhau mà (đã vẽ hình chính xác). Bạn xem lại đề để mình còn biết đường suy nghĩ nha!
xét tam giác BAN và tam giác MAN
có : ab=ac
bn=cn (bm+mn=cn+mn)
góc BAM = góc CAN (cmt)
=> tam giác BAN = tam giác MAN
==> góc BAN = góc MAN
bạn tự vẽ hình ạ
Xét tam giác BAM và tam giác MAN có:
BM=NM
góc BAM=góc NAm
AM:chung
suy ra:2 tam giác bằng nhau(C.G.C)
Suy ra góc BAM=gócMAN
Nhớ vote 5 sao nha
(Bạn tự vẽ hình giùm)
a/ \(\Delta AMB\)và \(\Delta ANC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
MB = NC (gt)
=> \(\Delta AMB\)= \(\Delta ANC\)(c - g - c) => AM = AN (hai cạnh tương ứng) (đpcm)
\(\Delta AHB\)và \(\Delta AHC\)có: AB = AC (\(\Delta ABC\)cân tại A)
BH = HC (H là trung điểm của BC)
Cạnh AH chung
=> \(\Delta AHB\)= \(\Delta AHC\)(c - c - c) => \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}\)= 180o (kề bù)
=> \(2\widehat{AHB}=180^o\)
=> \(\widehat{AHB}=90^o\)
=> \(AH\perp BC\)(đpcm)
b/ \(\Delta AHM\)vuông và \(\Delta AHN\)vuông có: AM = AN (cm câu a)
Cạnh AH chung
=> \(\Delta AHM\)vuông = \(\Delta AHN\)vuông (cạnh huyền - cạnh góc vuông) => HM = HN (hai cạnh tương ứng) => H là trung điểm MN
Ta có HB = HC = \(\frac{BC}{2}=\frac{6}{2}\)= 3 (cm)
và \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lý Pitago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 32
=> AH2 = 25 - 9
=> AH2 = 16
=> AH = \(\sqrt{16}\)(vì AH > 0)
=> AH = 4 (cm)
Ta lại có BM = MN = NC (gt)
Mà BM + MN + NC = BC
=> 3BM = 6
=> BM = MN = NC = 2
=> HM = HN = 1
và \(\Delta AHM\)vuông tại H => AM2 = AH2 + MH2 (định lý Pitago)
=> AM2 = 42 + 12
=> AM2 = 16 + 1
=> AM2 = 17
=> AM = \(\sqrt{17}\)(cm) (vì AM > 0)