Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo!
a) Vì M, B thuộc 2 tia đối nhau CB và CM
=> C nằm giữa B và M
=> BM = BC + CM =8 (cm)
b) Vì C nằm giữa B, M
=> Tia AC nằm giữa tia AB và tia AM
=> góc CAM = góc BAM - góc BAC = 20 độ
c) Ta có :
Góc xAy = góc xAC + góc CAy = 1/2 góc BAC + 1/2 góc CAM
= 1/2 (góc BAC + góc CAM) = 1/2 góc BAM 1/2 x 80 độ = 40 độ
d) Nếu K thuộc CM => C nằm giữa B và K
=> BK = BC + CK 6 (cm)
Nếu K thuộc CB => K nằm giữa C và B
=> BK = BC = CK = 4 (cm)
a) MB = 5,5 + 3 = 8,5 cm
b) CAM = 20 độ
c) TH1: K nằm trên đoạn BC => BK = 5,5 - 1 = 4,5 cm
TH2: K nằm trên đoạn CM => BK = 5,5 + 1 = 6,5 cm
A B C D M
A ) TA CÓ : điểm C nằm giữa 2 điểm B và M
nên : BC + CM = BM
HAY : 6 + 2 = 8 ( cm )
=> BM = 8 cm
b ) ta có : góc BAC + góc CAM = góc BAM
hay : góc BAC + 40o = 1000
góc BAC = 1000 - 400
=> góc BAC = 600
C )
Xét ΔABC có P,N,M thẳng hàng
nên \(\dfrac{PA}{PB}\cdot\dfrac{NC}{NA}\cdot\dfrac{MB}{MC}=1\)
=>\(\dfrac{PA}{PB}\cdot2\cdot1=1\)
=>\(\dfrac{PA}{PB}=\dfrac{1}{2}\)
=>PA=1/2PB
=>A là trung điểm của BP
=>BA=AP