Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh được tam giác ADB = tam giác AEC (g-c-g) => AD = AE, từ đó tam giác ADE cân tại A.
a.TG ABC cân tại A gt
=> ^B = ^C tính chất tg cân
Mà ^ECB=^ACE=1/2^C ( CE là pg ^C)
^DBC=^ABD=1/2^B ( BD là pg ^B)
=> ^ECB=^ACE =^DBC=^ABD
Xét tg BEC và tg CDB có:
^ECB = ^DBC(cmt)
BC chung
^B=^C (tg ABC cân tại A)
=>tg BEC = tg CDB(g-c-g)
b. Xét tg ABD và tg ACE có
^A chung
AB = AC (tg ABC cân tại A)
^ABD=^ACE(cmt)
=>tg ABD = tg ACE(g-c-g)
=>AD=AE (cctu)
=> tg ADE là tg cân
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF