Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
Suy ra: HB=HC(hai cạnh tương ứng)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
a: XétΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=BC/2=18(cm)
nên AH=24(cm)
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN(cmt)
Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAMO=ΔANO(cmt)
nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)
hay \(\widehat{BAH}=\widehat{CAH}\)
mà tia AH nằm giữa hai tia AB,AC
nên AH là tia phân giác của \(\widehat{BAC}\)
c) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH chung
Do đó: ΔAHB=ΔAHC(c-g-c)
Suy ra: HB=HC(hai cạnh tương ứng)
Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay \(AH\perp BC\)(đpcm)
Hình vẽ : tự vẽ
a) Ta có : tan giác ABC cân tại A ( gt )
\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )
Ta có : AB = AC ( cmt )
Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )
\(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)
\(\Rightarrow AM=AN\)
Xét : \(\Delta\)AMO và \(\Delta\)ANO có
Cạnh AO chung
AM =AN (cmt )
\(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)
\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)
b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)
\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng )
Ta có :
\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)
Mà : Tia AH nằm giữa tia AB và tia AC
\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )
c) Ta có :
\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )
\(\Rightarrow\) AH cùng là đường cao và trung truyến
\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )
d) Ta có :
\(AH\perp BC\left(cmt\right)\)
\(\Rightarrow\widehat{OHC}=90^0\)
\(\Rightarrow\)OC lớn hơn HC
Mà HC = HB ( cmt )
\(\Rightarrow\) OC lớn hơn HB ( đpcm )
-Hết-
3:
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
=>ΔABC=ΔABD
b: Xét ΔCBM và ΔDBM có
BM chung
góc CBM=góc DBM
BC=BD
=>ΔCBM=ΔDBM
a: ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH vừa là đường cao vừa là đừog trung tuyến
b: Vì H là trung điểm của BC
nên BH=CH=4cm
\(AH=\sqrt{AB^2-AH^2}=2\sqrt{21}\left(cm\right)\)
c: Xét ΔBIC có
IH là đường cao
IH là đường trung tuyến
Do đó:ΔBIC cân tại I
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
⇔BH=CH(hai cạnh tương ứng)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)
hay BH=3(cm)
Vậy: BH=3cm
c) Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{DAH}=\widehat{EAH}\)
Xét ΔDAH vuông tại D và ΔEAH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)(cmt)
Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
a/ Trong tam giác ABC cân tại A có: AH là tia phân giác (1)
=> AH cũng là đường trung tuyến
=> H là trung điểm BC => HB=HC
b/ Từ (1) => AH cũng là đường cao
=> AH \(\perp\) BC
c/ Ta có: H là trung điểm BC
=> HB=HC=\(\dfrac{1}{2}\) BC
mà BC=8(cm)
=> HB=BC=8:2=4(cm)
Dựa vào định lý Pytago
=> BH2+AH2=AB2
=> AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=> AH=\(\sqrt{9}\) =3(cm)
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
Suy ra: HB=HC(Hai cạnh tương ứng)