K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Xét hai tam giác vuông ABD và ACD, ta có:

                      ˆABD=ˆACD=90∘ABD^=ACD^=90∘

                      AB = AC (chứng minh trên)

                      AD cạnh huyền chung                     

⇒⇒ ∆ABD = ∆ACD (cạnh huyền, cạnh góc vuông)

Suy ra: ˆA1=ˆA2A1^=A2^ (hai góc tương ứng)

Vậy AD là tia phân giác của góc A.

19 tháng 4 2019

a) Xét t/g ABD và t/g HBD có:

AB = BH (gt)

ABD = HBD ( vì BD là phân giác ABC)

BD là cạnh chung

Do đó, t/g ABD = t/g HBD (c.g.c)

=> BAD = BHD = 90o (2 góc tương ứng)

=> DH _|_ BC (đpcm)

b) t/g ABD = t/g HBD (câu a)

=> ADB = HDB (2 góc tương ứng)

Mà ADB + HDB = ADH = 110o

Do đó, ADB = HDB = 110o : 2 = 55o

t/g ABD vuông tại A có: ABD + ADB = 90o

=> ABD + 55o = 90o

=> ABD = 90o - 55o = 35o

k nhé

19 tháng 4 2019

mình lm nhầm nhé

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi

26 tháng 1 2016

a) Xét 2 tam giác vuông BEC và tam giác CDB có BC chung, góc ABC=góc ACB

         Nên tam giác BEC = tam giác CDB

    Nên BD=CE( 2 cạnh tương ứng)

b)   Theo câu a ta có tam giác BEC=tam giác CDB

  Nên góc ECB=góc DBC( 2 góc tương ứng

Nên tam giác BIC cân tại I

d) Ta có DC=3cm, BC=5cm.

 Áp dụng định lí PI ta go ta có BD^2+ DC^2=BC^2

                                          ---> BD^2+ 9=25

                                  ---------------> BD=5cm

  Mà BD= EC

   Nên EC=5cm

   Tính AB thì c tương tự nhé bạn

 

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

15 tháng 1 2017

ta có : BO và Co 2 TPG => O là (trực tâm phải không nhỉ..)

=> AO là TPG \(\widehat{BAC}\)

=>\(\widehat{BAO}=30^o\)

15 tháng 1 2017

A,ta có:\(\widehat{ABC}+\widehat{BCA}=180^O-60^0\)

hay:\(\widehat{ABO}+\widehat{OBC}+\widehat{OCB}+\widehat{OCA}=120^o\)(do OB là TPG \(\widehat{ABC}\);OC là TPG \(\widehat{BCA}\))

<=>\(\widehat{2OBC}+\widehat{2OCB}=120^O\)

<=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=120^O\)

<=>\(\widehat{OBC}+\widehat{OCB}=120^O:2=60^O\)

xét tam giác OBC có:

\(\widehat{BOC}+\widehat{BCO}+\widehat{OBC}=180^O\)

=>\(\widehat{BOC}=180^O-\left(\widehat{BCO}+\widehat{OBC}\right)\)

=>\(\widehat{BOC}=180^O-60^O\)

=>\(\widehat{BOC}=120^O\)

còn câu b vs c mình đọc ko hiểu => ko biết làm . xin lỗi bạn

1 tháng 5 2016

a) C/m:tam giác BEM=CFM 

Vì  tam giác ABC cân tại A có :

=) đường trung tuyến AM

=) AM cũng là đường p/giác của tam giác ABC

=) ME = MF

Xét tam giác BEM ( E = 90 độ ) và CFM ( F = 90 độ ) có :

ME = MF ( Cmt )

BM = MC ( gt ) 

=) tam giác BEM=CFM ( ch - cgv )

b) C/m: Am là trung trực của EF

Ta có:

AB = AC (  vì tam giác ABC cân tại A )

mà EB = FC ( vì tam giác BEM=CFM )

=) AE = AF 

Ta có : 

AE = AF ( Cmt )

=) A thuộc đường trung trực cùa tam giác ABC (1)

EB = FC (  Cmt )

=) E thuộc đường trung trực cùa tam giác ABC (2)

Tứ (1) và (2) 

=) AE là đường trung trực của EF

c) C/m: A,M,D thẳng hàng 

Xét tam giác ABC cân tại A có : 

Đường cao CC cắt đường cao BB tại D 

=) D là trực tâm của tam giác ABC 

mà AM đi qua trực tâm D

=) AM cũng là đường cao của tam giác ABC

=) A,M,D thẳng hàng

=) ĐPCM

Cho tam giác ABC cân tại A,vẽ trung tuyến AM.Từ M kẻ ME vuông góc vs AB tại E, kẻ MF  vuông góc vs AC tại F

a,C/m:tam giác BEM=CFM

b, C/m: Am là trung trực của EF

c,từ B kẻ đường thẳng vuông góc vs AB tại B,từ C kẻ đường thẳng vuông góc vs AC tại C,hai đường này cắt nhau tại D.C/m: A,M,D thẳng hàng

Ai giúp tớ vs!Trình bày cả bài thì càng tốt,nếu ko làm câu c thôi cx dc!

Toán lớp 7