K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

Vì $ABC$ là tam giác cân tại $A$ nên $AB=AC=15$ cm 

Áp dụng tính chất tia phân giác:

$\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}$

$\Rightarrow \frac{AE}{AE+EC}=\frac{3}{5}$

$\Rightarrow \frac{AE}{AC}=\frac{AE}{15}=\frac{3}{5}$

$\Rightarrow AE=9$ (cm)

$EC=AC-AE=15-9=6$ (cm)

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Hình vẽ:

a: Xét ΔIAB có ID là phân giác

nên DA/DB=AI/IB=AI/IC

Xét ΔIAC có IE là phân gíac

nên AE/EC=AI/IC

=>DA/DB=EA/EC

=>DE//BC

b: Xét ΔABI có DO//BI

nên DO/BI=AO/AI

Xét ΔACI co EO//IC

nên EO/IC=AO/AI

=>DO/BI=EO/IC

mà BI=IC

nên DO=EO

=>O là trung điểm của DE

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có AE là phân giác

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)

=>\(\dfrac{BE}{6}=\dfrac{CE}{8}\)

=>\(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{10}{7}\)

=>\(BE=\dfrac{10}{7}\cdot3=\dfrac{30}{7}\left(cm\right);CE=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)

5 tháng 5 2017

a) Theo đề bài ta có:

\(\dfrac{AD}{DC}=\dfrac{BA}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

\(\dfrac{AD}{AD+DC}=\dfrac{15}{15+10}hay\dfrac{AD}{AC}=\dfrac{15}{25}\)

=> AD = \(\dfrac{15.AC}{25}=\dfrac{15.15}{25}=9\left(cm\right)\)

DC = AC - AD = 15 - 9 = 6 (cm)

Vậy AD = 9cm; DC = 6cm.

b) Vì BD \(\perp\) BE nên BE là đường phân giác của góc ngoài tại đỉnh B.

Áp dụng tính chất đường phân giác của góc ngoài ta có:

\(\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{BC}{BA}\)

hay \(\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)

=> EC = 30 (cm)

Vậy EC = 30cm.

8 tháng 3 2022

a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)

b, Ta có BD là pg, mà BD vuông BE 

nên BE là pg ngoài tam giác ABC 

\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)

 

a: Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/15=CD/10

=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3

=>AD=9cm; CD=6cm

b: BE vuông góc BD

=>BE là phân giác góc ngoài tại B

=>EC/EA=BC/BA

=>EC/(EC+15)=10/15=2/3

=>3EC=2EC+30

=>EC=30cm

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho