K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

A) Xét tam giác DMB và tam giác MAN có : MA=MB ; góc MBD = góc MAN ( vì hai góc sole trong)  ; góc AMN=góc BMD ( vì hai góc đối đỉnh) vậy tam giác DMB = tam giác MAN ( G-C-G)  suy ra : MN=MD mà ta lại có MNsong song với BC và bằng 1/2 BC vậy suy ra : MN+MD=BC mà ta lại có MN song song với BC suy ra DN cũng song song với  BC vậy Tứ giác BDNC là hình bình hành

B) Tứ giác BDNH là hình thang cân Do: DN song song với BH vậy tứ giác DNHB là (hình thang)*  mà ta lại có : AN = DB ; AN=NH ( vì đường trung tuyến ứng với cạnh huyền) vậy DH = NH** từ (*) và (**) suy ra : tứ giác BDNH là hình thang cân 

6 tháng 12 2016

tích cho tôi đi ông

27 tháng 10 2019

a) Ta có: \(AF//ME\left(gt\right)\)

mà AF⊥AB(\(\widehat{CAB}=90\) độ)

nên ME⊥AB(định lí 2 về quan hệ giữa vuông góc và song song)

Ta có: \(MF//AB\left(gt\right)\)

mà AC⊥AB(\(\widehat{CAB}=90\) độ)

nên MF⊥AC(định lí 2 về quan hệ giữa vuông góc và song song)

Ta có: AM là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do M là trung điểm của BC)

\(AM=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)

\(BM=\frac{BC}{2}\)(M là trung điểm của BC)

nên BM=AM

Xét ΔMEA(\(\widehat{MEA}=90\) độ) và ΔMEB(\(\widehat{MEB}=90\) độ) có

MA=MB(cmt)

ME chung

Do đó ΔMEA=ΔMEB(cạnh huyền-cạnh góc vuông)

⇒AE=EB(hai cạnh tương ứng)(1)

Xét tứ giác AEMF có

\(\widehat{FAE}=90\) độ(\(\widehat{CAB}=90\) độ, \(F\in AC,E\in AB\))

\(\widehat{MEA}=90\) độ(ME⊥AB)

\(\widehat{AFM}=90\) độ(MF⊥AC)

Do đó: AEMF là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

⇒AE=FM và AE//FM(cặp cạnh đối của hình chữ nhật AEMF)(2)

Ta có: AE=EB(cmt)

mà AE và EB có điểm chung là E

nên E là trung điểm của AB

⇒E∈AB(3)

Từ (1),(2),(3) suy ra

FM=EB và FM//EB

Xét tứ giác FMBE có

FM=EB(cmt) và FM//EB(cmt)

nên FMBE là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒FE//BM(cặp cạnh đối của hình bình hành FMBE) (4)

Ta có: M là trung điểm của BC(gt)

⇒M∈BC(5)

Từ (4) và (5) suy ra FE//BC

Xét tứ giác FEBC có FE//BC(cmt)

nên FEBC là hình thang có hai đáy là FE và BC(dấu hiệu nhận biết hình thang)

b) câu b mình chứng minh ở trên rồi nha bạn

c) Ta có: FE=AM(do FE và AM là hai đường chéo của hình chữ nhật AEMF)

mà O là trung điểm của đường chéo AM(gt)

nên O cũng là trung điểm của đường chéo FE

hay F và E đối xứng với nhau qua O(đpcm)

3 tháng 1 2018

a) Xét tứ giác AMIN, ta có:

\(\widehat{A}\) = 90o (△ABC vuông tại A)

\(\widehat{M}\) = 90o (IM ⊥ AB tại M)

\(\widehat{N}\) = 90o (IN ⊥ AC tại N)

Vậy tứ giác AMIN là hình chữ nhật.

b) *Xét △AIC, ta có:

IA = IC (AI là đường trung tuyến của △vABC)

⇒ △AIC cân tại A

Mà IN ⊥ AC (gt)

Nên IN là đường cao của △AIC

⇒ Đồng thời là đường trung tuyến

⇒ AN = NC

*Xét tứ giác ADCI, ta có:

IN = ND (gt)

AN = NC (cmt)

⇒ ADCI là hình bình hành

Mà AI = IC (cmt)

Vậy ADCI là hình thoi.

c) Gọi O là giao điểm BN và AI

Vì ADCI là hthoi (cmt)

⇒ AI // CD

\(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)

*Cm: △INP = △DNK (g.c.g)

⇒ IP = DK

*Vì ADCI là hthoi (cmt)

⇒ AI = DC

*Ta có:

AN = NC (cmt)

⇒ BN là đường trung tuyến

*Xét △ABC, ta có:

AI, BN là đường trung tuyến (gt,cmt)

Mà AI, BN cắt nhau tại B (theo cách vẽ)

Nên P là trọng tâm của △ABC

\(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)

Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)

20 tháng 5 2016

a,vi bh la dung cao ad h la trung diem ad suy ra tam giac bda can tai b suy ra b=180-bad/2 (1)

vimh vuong goc ad h la trung diem ad suy ra tam giac dma can tai m suy ra m=180-adm/2 ( 2)

vi ab//dn suy ra bad=adm (3)

tu 1 2 3 suy ra abd=dma (4)

vi tam giac abd can tai b suy ra bad=bda (5)

tam giac abm can tai m suy ra adm=dam (6)

tu 3 5 6 suy ra bda=dam suy ra bam=bdm (7)

tu 4 va 7 suy ra tu giac bdma la hinh binh hanh co bm vung goc ad suy ra tu giac abdm la hinh thoi

b,vi dn vung goc ac ch vuong goc voi ad ch va dn cat nhau tai m suy ra m la truc tam cua tam giac acd

c,