K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

A B C M H K E F 1 2 I

a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến  ( t/c ) 

=> AM là đường trung tuyến ứng với cạnh BC 

=> M là trung điểm của BC   => MB = MC = 1/2 BC

b)-Vì tam giác ABC cân nên góc B = góc C 

Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)

Xét tam giác MHB và tam giác MKC có : 

góc MHB = góc MKC ( =90 độ ) 

MB = MC ( cm ở câu a ) 

góc B = góc C (cmt ) 

Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )

=> MH = MK ( cặp cạnh tương ứng ) 

* Gọi I là giao điểm của AM và HK 

Vì tam giác MHB = tam giác MKC ( cmt ) 

=> BH = CK ( cặp canh t/ư) 

Mà AB = AC ( tam giác ABC cân tại A )

=> AB - BH = AC - CK 

=> AH = AK 

=> Tam giác AHK cân tại A ( d/h ) 

Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác 

=> AM là tia phân giác của góc BAC 

Hay AI là tia phân giác của góc BAC 

- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến  (t/c) 

=> AI là đường cao đồng thời là trung tuyến của tam giác AHK 

=> AM vuông góc HK tại I  và I là trung điểm của HK 

=> AM là đường trung trực của HK ( d/h ) 

c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H

Mà H là trung điểm EM 

=> AB là đường trung trực EM 

=> AE = AM ( t/c ) 

Tương tự : AC là đường trung trực của MF 

=> AF = AM  (t/c) 

Suy ra : AE = AF ( = AM )

=> Tam giác AEF cân tại A ( d/h ) 

15 tháng 8 2019

Câu d ) Bạn gọi O là giao điểm của EF với AM 

C/m : tam giác AEO = tam giá AFO 

=> EO = OF

Tiếp tục sử dụng tính chất đặc biệt của tam giác cân như mấy câu trên là ra !!

P/s: Mk k giỏi Hình như giải dài dòng, bn thông cảm nhé

27 tháng 4 2021

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

27 tháng 4 2021

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs