K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
10 tháng 6 2022

Xét tam giác \(AMH\) và tam giác \(BCK\):

\(\widehat{MAH}=\widehat{CBK}\) (vì cùng phụ với góc \(\widehat{ACM}\))

\(\widehat{AHM}=\widehat{BKC}\left(=90^o\right)\)

suy ra \(\Delta AMH\sim\Delta BCK\left(g.g\right)\)

\(\Rightarrow\dfrac{MH}{AH}=\dfrac{CK}{BK}\Rightarrow\dfrac{OH}{AH}=\dfrac{HK}{BK}\)

\(\Rightarrow\Delta AOH\sim\Delta BHK\left(c.g.c\right)\)

Gọi giao điểm \(BK\) và \(AO\) là \(P\), giao điểm \(AO\) và \(BH\) là \(Q\).

\(BK//MH\) suy ra \(\widehat{APK}=\widehat{AOH}\) mà \(\widehat{AOH}=\widehat{BHK}\)  và \(\widehat{APK}+\widehat{QPK}=180^o\) 

suy ra \(\widehat{QPK}+\widehat{QHK}=180^o\) suy ra \(\widehat{PQH}+\widehat{PKH}=180^o\)

suy ra \(\widehat{PQH}=90^o\)

do đó ta có đpcm. 

10 tháng 6 2022

\(\dfrac{MH}{AH}=\dfrac{CK}{BK}\Rightarrow\dfrac{OH}{AH}=\dfrac{HK}{BK}\)

Có thể gải thích lại chỗ này được không ạ?

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

1 tháng 5 2019

a, tam giác AIH và tam giác HIC đều vuông tại I 

tam giác ABC cân tại A ; H là trung điểm của BC (gt)

=> AH _|_ BC (đl) và AH là phân giác của góc BAC

=> góc  BAH + góc ABC = 90 mà góc ABH = góc HAC

=> góc HAC + góc ABC = 90

tam giác ABC cân tại A => góc B = Góc C

có góc IHC + góc ACB = 90 

=> gócIHC + góc ABC = 90

=> góc HAC = góc IHC 

tam giác AIH và tam giác HIC đều vuông tại I 

=>t am giác AIH ~ tam giác HIC

=> HA/HC = HI/IC

=> HA.IC = HC.HI

28 tháng 8 2023

A B C M H N I E Q K D

a/

\(BN\perp AC;MH\perp AC\) => MH//BN

Xét tg BNC có

MH//BN

MB=MC

=> HN=HC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MH//BN. Xét tg AMH

\(\dfrac{ED}{IM}=\dfrac{EN}{IH}\) (talet)

Mà IM=IH => ED=EN

b/

Xét tg vuông ABN có

\(BN^2=AB^2-AN^2=AC^2-AN^2=\)

\(=AC^2-\left(AC-CN\right)^2=AC^2-\left(AC-2HN\right)^2=\)

\(=AC^2-AC^2+4AC.HN-4HN^2=\)

\(=4HN.\left(AC-HN\right)=4HN\left(AC-HC\right)=\)

\(=4HN.HA\)

Xét tg BCN có

MB=MC; HN=HC => MH là đường trung bình => \(MH=\dfrac{BN}{2}\)

Mà MH=2MI\(\Rightarrow2MI=\dfrac{BN}{2}\Rightarrow BN=4MI\)

Ta có

\(BN^2=4HN.HA\Rightarrow\left(4MI\right)^2=4HN.HA\)

\(\Rightarrow16MI^2=4.HN.HA\Rightarrow MI^2=HN.HA\)

 

 

 

3 tháng 8 2015

A B C M N H

a) Ta có: góc MNC = góc BAC = 900

=> MN // BC  (2 góc đồng vị bằng nhau)    (đpcm)

b) Ta có:  AC // HM  (gt) 

Và AC vuông góc với AB  (góc BAC = 900)

=> MH vuông góc với AB    (đpcm)

3 tháng 8 2015

câu a) MN // Ab mới đúng bạn nhé