Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
DO đó: ΔFBC=ΔECB
Suy ra: FB=EC
b: Ta có: AF+FB=AB
AE+EC=AC
mà BF=CE
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
B C A F K D E M
a)Vì \(\Delta ABC\)cân tại A (gt) \(\Rightarrow\hept{\begin{cases}\widehat{B}=\widehat{C}\left(1\right)\\AB=AC\left(4\right)\end{cases}}\)
Vì DE // BC (gt) \(\Rightarrow\hept{\begin{cases}\widehat{ADE}=\widehat{DBC}\left(2\right)\\\widehat{AED}=\widehat{ECB}\left(3\right)\end{cases}}\)
Từ \(\left(1\right),\left(2\right)\left(3\right)\Rightarrow\widehat{ADE}=\widehat{AED}\)
\(\Delta AED\)có:
\(\widehat{ADE}=\widehat{AED}\left(cmt\right)\)
\(\Rightarrow\Delta AED\)cân tại A (tính chất)
=> AE =AD (định nghĩa) (5)
Từ (4),(5) => BD =CE (6)
Vì DE // BC (gt)\(\Rightarrow\widehat{EDC}=\widehat{DCB}\)(2 góc so le trong)
mà \(\widehat{DCB}=\widehat{DCE}\)(CD là phân giác của \(\widehat{ACB}\))
\(\Rightarrow\widehat{EDC}=\widehat{DCE}\)
\(\Delta EDC\)có:
\(\widehat{EDC}=\widehat{DCE}\left(cmt\right)\left(9\right)\)
\(\Rightarrow\Delta EDC\)cân tại E (tính chất)
=> ED = EC (định nghĩa) (7)
Từ (6), (7) => BD = DE (15)
Lấy K thuốc tia đối của tia DF
Ta có: \(\widehat{KDC}=90^o\Rightarrow\widehat{EDC}+\widehat{DCK}=90^o\left(8\right)\)
\(\Delta KDC\)có:
\(\widehat{KDC}=90^o\)
\(\Rightarrow\widehat{DKC}+\widehat{DCK}=90^o\)(tổng 3 góc trong 1 tam giác, áp dụng vào tam giác vuông) (10)
Từ (8), (9), (10) => \(\widehat{DKC}=\widehat{KDE}\)
\(\Delta EDK\)có:
\(\widehat{EDK}=\widehat{EKD}\left(cmt\right)\)
\(\Rightarrow\Delta EDK\)cân tại E (tính chất)
=> ED =EK (định nghĩa) (11)
Từ (7),(11) => ED = EC = EK
Ta có: CK = EC + EK
mà ED = EC = EK (cmt)
=> CK= ED + ED
=> CK =2.ED (12)
\(\Delta CDK\)và \(\Delta CDF\)có:
\(\widehat{DCK}=\widehat{CDF}\)
chung cạnh CD
\(\widehat{CDK}=\widehat{CDF}\left(=90^o\right)\)
\(\Rightarrow\Delta CDK=\Delta CDF\)(góc nhọn - cạnh góc vuông)
=> CK = CF(2 cạnh tương ứng) (13)
Từ (12),(13) => CF = 2.ED (14)
Từ (14),(15) => CF = 2.BD
b) \(\Delta AMD\)và \(\Delta AME\)có:
AD = AE (câu a)
\(\widehat{MAD}=\widehat{MAE}\left(gt\right)\)
chung AM
\(\Rightarrow\Delta AMD=\Delta AME\left(c.g.c\right)\)
=> MD = ME (2 cạnh tương ứng)
Ta có: ED = MD + ME
mà MD = ME (cmt)
=> ED = MD + MD
=> ED = 2.MD
=> 2.ED = 2.2MD
=>2.ED = 4.MD (16)
Từ (14),(16) => CF = 4.MD
Ai bảo bài làm của mik sai thì hãy nhìn kĩ lại đi nha !
Bài này, t chắc chắn đúng 100% lun đó
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng
A B C E F K
a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)
mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )
Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )
TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)
=> \(\Delta EBK\)cân tại E
b , Đề bài thiếu :>
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`