\(H\in BC\))
1) Chứng minh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\) (tính chất tam giác cân).

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).

=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}\) (1).

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}\) (2).

Từ (1) và (2) => \(\widehat{B}=\widehat{C}=180^0-\frac{\widehat{A}}{2}.\)

b) Xét 2 \(\Delta\) vuông \(AHB\)\(AHC\) có:

\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

Cạnh AH chung

=> \(\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông).

=> \(HB=HC\) (2 cạnh tương ứng).

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

c) Ta có:

\(\left\{{}\begin{matrix}AM+BM=AB\\AN+CN=AC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BM=CN\left(gt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)

=> \(AM=AN.\)

=> \(\Delta AMN\) cân tại A.

Chúc bạn học tốt!

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ^BAH=^CAH(Hai góc tương ứng)



20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ˆBAHBAH^=ˆCAHCAH^(Hai góc tương ứng)



Xem thêm tại: http://loigiaihay.com/bai-63-trang-136-sach-giao-khoa-toan-7-tap-1-c42a5157.html#ixzz4envied4H

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b)∆ABH=∆ACH(Câu a)

Suy ra ˆBAH^=ˆCAH(Hai góc tương ứng)

26 tháng 5 2017

a) Xét tam giác AHB và tam giác AHC có:

\(\widehat{AHB}=\widehat{AHC}=90^o\)

AB=AC(tam giác ABC cân)

\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân)

Do đó tam giác AHB=tam giác AHC(ch-gn)

Suy ra HB=HC(hai cạnh tương ứng)

b)Vì tam giác AHB=tám giác AHC(câu a)

Nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

25 tháng 8 2016

A B C H

a) Xét hai tam giác vuông ABH và ACH

có:+AB=AC( \(\Delta ABC\) cân tại A)

      +AH: cạnh chung

Vậy \(\Delta ABH=\Delta ACH\left(ch-cgv\right)\)

=> HB=HC(  hai cạnh tương ứng)

b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)

nên: góc BAH=góc CAH( hai góc tương ứng)

hihi ^..^ vui^_^

25 tháng 8 2016

A B C H

a) Xét \(\Delta\nu ABH\) và \(\Delta\nu ACH\) có :

   \(AB=AC\left(gt\right)\)

   \(AH\) là cạnh chung

 Do đó : \(\Delta\nu ABH=\Delta\nu ACH\left(ch-gn\right)\)

\(\Rightarrow HB=HC\) ( vì hai cạnh tương ứng )

b )  Vì : \(\Delta\nu ABH=\Delta\nu ACH\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

 

5 tháng 3 2020

MỌI NGÙI ƠI GUISP MIK VS , CẦN GẤP