Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân
Theo định lí pytago, ta có :
AH2+HC2+AC2
hay AC2=42+32
=> AC2= 25=>AC=5
Xét 2 tam giác vuông AHC và AHB , ta có :
Góc ABH= góc ACH(gt)
Cạnh AH chung
do đó tam giác ABH=tam giác ACH(cạnh huyền- góc nhọn)
=>BH=HC(2 cạnh tương ứng)
BC=BH+CH
=> BC= 3+3=6
mà tam giác ABC là tam giác cân nên AC=AB
Chu vi của tam giác ABC là : 5+5+6=16 cm
Chúc bạn học tốt
Hình bạn tự vẽ nha
Vì H \(\in AC\)\(\Rightarrow AH+HC=AC\)
\(\Rightarrow AC=7\left(cm\right)\)
Vì \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC=7\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta có
\(AH^2+BH^2=AB^2\)
\(\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=7^2-4^2=33\)
\(\Rightarrow BH=\sqrt{33}\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BHC vuông tại H ta có
\(BH^2+HC^2=BC^2\)
\(\Rightarrow BC^2=33+9=42\left(cm\right)\)
\(\Rightarrow BC=\sqrt{42}\left(cm\right)\)
Chu vi tam giác ABC là:
\(7+7+\sqrt{42}\approx20\left(cm\right)\)
Vậy...
ta có AB=AC=7cm
xét\(\Delta AHB\)vuông tại H =>BH=\(\sqrt{33}\)cm
=>BC=\(\sqrt{42}\)cm
=>p=\(14+\sqrt{42}\)\(\approx20.48cm\)
Áp dụng định lý Pitago vào tam giác ABH tìm được BH, rồi đến tam giác BHC tìm được BC sau đó tính chu vi nha!
Tam giác ABC vuông tại A có đường cao AH. Áp dụng hệ thức lượng
\(\Rightarrow AH^2=BH.CH=2.3=6\)
\(\Rightarrow AH=\sqrt{6}\left(cm\right)\)
Áp dụng hệ thức lượng vào tam giác vuông \(ABC \) ta có :
\(AH^2=CH.BH=3.2=6\)
\(\Rightarrow AH=\sqrt{AH^2}=\sqrt{6}\) \(\left(cm\right)\)