K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có

AB=AC
góc BAH chung

=>ΔAHB=ΔAKC

=>AH=AK

b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co

AI chung

AK=AH

=>ΔAKI=ΔAHI

=>IH=IK

=>AI là trung trực của KI

c: góc EBC+góc ABC=90 độ

góc HBC+góc ACB=90 độ

góc ABC=góc ACB

=>góc EBC=góc HBC

=>BC là phân giác của góc HBE

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

9 tháng 5 2019

Trả lời................

Tớ ko biết đúng hay sai nha:

a) Vì ΔΔABC cân tại A

=> AB = AC và ABCˆABC^ = ACBˆACB^

hay KBCˆKBC^ = HCBˆHCB^

Xét ΔΔCKB vuông tại K và ΔΔBHC vuông tại H có:

BC chung

KBCˆKBC^ = HCBˆHCB^ (c/m trên)

=> ΔΔCKB = ΔΔBHC (ch - gn)

=> KB = HC (2 cạnh t/ư)

Ta có: AH + HC = AC

AK + KB = AB

mà AB = AC; KB = HC

=> AH = AK

b)

) Xét ΔΔAHB và ΔΔAKC có:

AH = AK (câu a)

BACˆBAC^ chung

AB = AC (câu a)

=> ΔΔAHB = ΔΔAKC (c.g.c)

=> ABHˆABH^ = ACKˆACK^ (2 góc t/ư)

hay KBIˆKBI^ = HCIˆHCI^

Xét ΔΔKBI và ΔΔHCI có:

KB = HC (câu a)

KBIˆKBI^ = HCIˆHCI^ (c/m trên)

BKIˆBKI^ = CHIˆCHI^ (= 90o)

=> ΔΔKBI = ΔΔHCI (g.c.g)

=> KI = HI (2 cạnh t/ư)

Xét ΔΔAKI và ΔΔAHI có:

KI = HI (c/m trên)

AI chung

AK = AH (câu a)

=> ΔΔAKI = ΔΔAHI (c.c.c)

=> KAIˆKAI^ = HAIˆHAI^ (2 góc t/ư)

Do đó AI là tia pg của AˆA^.

c)

c) Có : KBCˆ+CBEˆ=90o;HCBˆ+HBCˆ=90oKBC^+CBE^=90o;HCB^+HBC^=90o

mà KBCˆ=HCBˆKBC^=HCB^ ⇒⇒ HBCˆ=CBEˆHBC^=CBE^ hay BC là phân giác HBEˆ

Bài 2: 

a: Xét ΔAHB và ΔAHC có 

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

DO đó; ΔAHB=ΔAHC

b: Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

c: BC=10cm nên BH=CH=5cm

=>AC=13cm

5 tháng 4 2022

giúp mik câu 1 đc ko ạ

 

30 tháng 3 2022

a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)

\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)

\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)

b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)

 \(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)

-Từ (1), (2) suy ra AM là đg trung trực của BC.

20 tháng 2 2019

a) Xét tam giác ABM và ACM, ta có:

       AB=AC (gt)

       AM:chung

Vậy tam giác ABM=ACM( cạnh huyền-cạnh góc vuông)

b)gọi giao điểm của AM,BC là D

Xét tam giác ADB và ADC, ta có

AB=AC(gt)

GÓC BAD=CAD(tam giác ABM=ACM)

AD: chung

Vậy tam giác ADB=ADC(c.g.c)

Góc ADB=ADC(2 góc tương ứng)

mà ADB+ADC=180( kề bù)

Vậy góc ADB=ADC=90

AM vuông góc với BC

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E  BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

b: ΔEBC=ΔDCB

=>góc HBC=góc HCB

=>HB=HC

mà AB=AC

nên AH là trung trực của BC