K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

a ) Xét Δ AHB và Δ AHC có :

AB = AC ( GT )

Góc AHB = góc AHC

AH là cạnh chung

=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông )

3 tháng 5 2018

cảm ơn bn

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
26 tháng 6 2020

Trả lời phần d thôi nhé

26 tháng 6 2020

I A B C H E F

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △BAH và △CAH cùng vuông tại H

Có: AH là cạnh chung

      AB = AC (cmt)

=> △BAH = △CAH (ch-cgv)

b, Vì △BAH = △CAH (cmt)

=> BH = CH (2 cạnh tương ứng)

mà BH + CH = BC

=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 102 - 62 = 64

=> AH = 8 (cm)

c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)

Mà ∠HAC = ∠HAB (△CAH = △BAH)

=> ∠AHE = ∠HAB  => ∠AHE = ∠HAE 

=> △AHE cân tại E

d, Gọi { I } = EH ∩ BF

Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)

Mà ∠ABC = ∠ACB (cmt)

=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH

Mà EA = HE (△AHE cân tại E)

=> EA = BE 

Xét △BAH có: E là trung điểm AB (EA = BE)  => HE là đường trung tuyến

F là trung điểm AH => BF là đường trung tuyến 

EH ∩ BF = { I } 

=> I là trọng tâm của △BAH

\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)

Xét △BHI có: BI + HI > BH (bđt △)

\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)

\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)

\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)

18 tháng 1 2021

Sửa lại đề : A < 90*

a, Chứng minh 

\(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\RightarrowĐPCM\)

b, CM được :

\(\widehat{ADE}\)\(=\)\(\widehat{ACB}\)\(=\)\(\frac{180'-\widehat{BAC}}{2}\)

\(\Rightarrow DE//BC\)

c, CM được : \(\widehat{IBC}=\widehat{ICB}\)

\(\RightarrowĐPCM\)

d, Gọi M là giao điểm của AI và BC ,

CM được AI là tia phân giác của góc \(\widehat{BAC}\), từ đó \(\widehat{AMB}\)\(=90'\)

\(\RightarrowĐPCM\)

A D E C M B I

13 tháng 3 2022

HAHA