K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

3 tháng 5 2018

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !

31 tháng 3 2016

vẽ hình nha

chứng minh hình thì phải nhờ thánh toán trong đội tuyển của mk

10 tháng 5 2015

Ta có hình vẽ

A B c M E F D a)Xét tam giác BEMvà CFMta có

BM=CM(vì AM là trung tuyến ứng với BC)

Góc ABC=góc ACB(vì tam giác ABC cân ở A)

góc BEM=CFM(=90)

=>tam giácBEM=CFM(cạnh huyền-góc nhọn)

b) Từ câu a ta có Tam giác BEM=CFM

                                  =>BE=FC(hai cạnh tương ứng)

ta có AE=AB-BE

        AF=AC-CF

Mà AB=AC(tam giác ABC cân ở A)

   BE=CF(như trên)

 Vậy AE=AF

TRong 1 tam giác cân đường trung tuyến đồng thời là đường phân giác, đường trung trực,....

nên AM là phân giác góc A =>góc BAM=CAM

 Xét tam giác  AEI và AFI ta có

AI cạnh chung

AE=AF

góc BAM=CAM

=>tam giác AEM=AFM(c.g.c)

=>góc AIE=AIF(tương ứng)

Mà AIE+AIF=180do(kề bù)

=>AIE=AIF=180/2=90do

Vậy AM vuông góc với EF

c) theo câu a ta có tam giác BEM=CFM

                                           =>ME=MF

                                       vậy M thuộc phân giác góc A (1)

Xét tam giác  vuông ABD và ACD có

AD cạnh chụng

góc BAM=CAM

=>tam giác ABD=ACD(cạnh huyền -góc nhọn)

=>    DB=DC => D thuộc phân giác của góc A(2)

Từ (1) và (2) =>A;M;D thẳng hàng

 

 

12 tháng 5 2016

Bạn Minh ANh cho mình hỏi Góc I ở đâu vậy

6 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác EBM vuông tại E và tam giác FCM vuông tại F có:

BM = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)

EBM = FCM (tam giác ABC cân tại A)

=> Tam giác EBM = Tam giác FCM (cạnh huyền - góc nhọn)

b.

AB = AE + EB

AC = AF + FC

mà AB = AC (tam giác ABC cân tại A)

      EB = FC (tam giác EBM = tam giác FCM)

=> AE = AF => F thuộc trung trực của EF (1)

mà EM = FM (tam giác EBM = tam giác FCM) => M thuộc trung trực của EF (2)

Từ (1) và (2) => AM là đường trung trực của EF

hay AM _I_ EF

c.

AM là trung tuyến của tam giác ABC cân tại A

=> AM là tia phân giác của BAC (3)

Xét tam giác BAP vuông tại B và tam giác CAP vuông tại Ccó:

AB = AC (tam giác ABC cân tại A)

AP là cạnh chung

=> Tam giác BAP = Tam giác CAP (cạnh huyền - cạnh góc vuông)

=> BP = CP (2 cạnh tương ứng)

=> AP là tia phân giác của BAC

mà AM là tia phân giác của BAC (theo 3)

=> AP \(\equiv\) AM

=. A , P , M thẳng hàng

Chúc bạn học tốtok

6 tháng 5 2016

a) xét tam giác BEM và tam giác CFM có :

góc B = góc C (do tam giác ABC cân tại A)

góc BEM = góc CFM =90 độ

BM = CM (gt)

=> tam giác BEM =tam giác CFM (ch-gn)

=>EM=MF (2 cạnh t ư )

b) gọi I là giao của AM và EF

cm tương tự ta cũng có tam giác AEI= tam giác AFI (c.c.c)

=>  EI= IF (2 cạnh t ư )

cm tương tự ta cũng có tam giác EAI = tam giác FAI  ( c.g.c )

=> góc EIA = góc FIA ( 2 góc t ư )

mà góc EIA + góc FIA =180 độ 

=> góc EIA = góc FIA = 90 độ 

=>  AM vuông góc vs EF tại I

C) CM : góc AMD = 180 ĐỘ