Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B E A F C M I 1 2 1 N2
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
d) Qua F kẻ đg thẳng // với CE cắt AM tại H
+ HF là đg trung bình của ΔACI
⇒HF=\(\frac{1}{2}\)CI⇒HF=12CI
+ ΔABM cân tại M
=> đg cao ME đồng thới là đg trung tuyến
=> AE = BE
+ Tương tự : AF = CF
+ EF là đg trung bình của ΔABC
=> EF // BC
+ Tứ giác EFCM là hbh
=> MK = FK
+ HF // CE => HF // IK
+ IK là đg trung bình của ΔMHF
\(\Rightarrow IK=\frac{1}{2}HF\Rightarrow CI=4IK\)
⇒IK=12HF⇒CI=4IK
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
hok tốt!
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AH=AK
Xét ΔACB co AH/AB=AK/AC
nên HK//BC
Bạn tự vẽ hình
a Xét tam giác ABD và tam giác ACE có
góc BEC= góc CDB= 90 độ
AB=AC
AH chung
suy ra tam giác ABD= tam giác ACE(c.g.c)
b) Vì tam giác ABD= tam giác ACE( theo a)
suy ra BD=CEhay BH=CH( 2canhj tương ứng)
Xét tam giác BHC có
BH= CH
suy ra tam giác BHC cân tại H
A B C M H K E F 1 2 I
a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến ( t/c )
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của BC => MB = MC = 1/2 BC
b)-Vì tam giác ABC cân nên góc B = góc C
Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)
Xét tam giác MHB và tam giác MKC có :
góc MHB = góc MKC ( =90 độ )
MB = MC ( cm ở câu a )
góc B = góc C (cmt )
Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )
=> MH = MK ( cặp cạnh tương ứng )
* Gọi I là giao điểm của AM và HK
Vì tam giác MHB = tam giác MKC ( cmt )
=> BH = CK ( cặp canh t/ư)
Mà AB = AC ( tam giác ABC cân tại A )
=> AB - BH = AC - CK
=> AH = AK
=> Tam giác AHK cân tại A ( d/h )
Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác
=> AM là tia phân giác của góc BAC
Hay AI là tia phân giác của góc BAC
- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến (t/c)
=> AI là đường cao đồng thời là trung tuyến của tam giác AHK
=> AM vuông góc HK tại I và I là trung điểm của HK
=> AM là đường trung trực của HK ( d/h )
c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H
Mà H là trung điểm EM
=> AB là đường trung trực EM
=> AE = AM ( t/c )
Tương tự : AC là đường trung trực của MF
=> AF = AM (t/c)
Suy ra : AE = AF ( = AM )
=> Tam giác AEF cân tại A ( d/h )
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc BAC
hay góc BAM= góc CAM
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
hay ΔMHK cân tại M
d: Xét ΔAHK có AH=AK
nên ΔAHK cân tại A
e: Xét ΔABC có AH/AB=AK/AC
nên HK//BC