K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AKCI co

M là trung điểm chung của AC và KI

nên AKCI là hình bình hành

=>CI//AK

a: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

b: ΔNBC=ΔMCB

=>góc KBC=góc KCB

=>ΔKBC cân tại K

c: Xét tứ giácc AKCI có

M là trung điểm chung của AC và KI

nên AKCI là hình bình hành

=>CI//AK

1 tháng 5 2019

a, Do \(NA=NB=\frac{1}{2}AB\)

\(AM=MC=\frac{1}{2}AC\)

Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)

b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:

\(\widehat{BAC}chung\)

\(AB=AC\)

\(AN=AM\)(câu a)

\(\Rightarrow\Delta ANC=\Delta AMB\)

\(\Rightarrow BM=CN\)

c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:

\(BCchung\)

NB = MC ( câu a)

NC = MB ( câu b)

=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C

TYM cho chị nhé <3

1 tháng 6 2017

Ta có hình vẽ:

A B C N M

Theo bài ra ta có:

Tam giác ABC cân tại A

=> AB=AC ( hai cạnh bên của tam giác cân )

Ta lại có:

M là trung điểm của AC;N là trung điểm của AB

=> AN=BN=CM=AM

Ta có: \(\Delta ABM=\Delta ACN\) (c.g.c)

=> BM=CN ( hai cạnh tuơng ứng )

(đ.p.c.m)

11 tháng 2 2018

\(\hept{\begin{cases}AB=AC\\AM=\frac{1}{2}AC\\AN=\frac{1}{2}AB\end{cases}}\)

Từ đó suy ra AM=AN

                 =>BM=CN

12 tháng 2 2018

ta có  tam giác ABC cân tại A => AB=AC ( hai cạnh bên)

mà ta có  AM =MC (vì m là trung điểm) => mc=\(\frac{1}{2}ac\)

ta lại có an =nb (vì n là trung điểm ab)=> nb=\(\frac{1}{2}ab\) mà ab=ac=> 1/2 ab=1/2ac hay mc=bn

xét tam giác bnc và tam giác cmb có:

bn=mc(cmt)

góc nbc=góc mcb

bc chung

do đó tam giác bnc = tam giác cmb (c.g.c)

=>nc=bm (hai cạnh tương ứng)

thông cảm hình vẽ quá xấu  mình chắc chắn đúng đó

15 tháng 2 2021

25 tháng 10 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

+) Do M là trung điểm của AC nên: Giải sách bài tập Toán 7 | Giải sbt Toán 7 (1)

+) Do N là trung điểm của AB nên: Giải sách bài tập Toán 7 | Giải sbt Toán 7 (2)

Lại có: AB = AC ( vì tam giác ABC cân tại A). (3)

Từ (1); (2); (3) suy ra: AN = NB = AM = MC.

+) Xét ∆ AMB và ∆ANC có:

Góc A chung

AM = AN ( chứng minh trên)

AB = AC ( vì tam giác ABC cân tại A)

Suy ra: ∆ AMB = ∆ANC ( c.g.c)

Do đó: BM = CN ( hai cạnh tương ứng).

30 tháng 1 2021

Ta có: AN = BN = \(\dfrac{1}{2}\)AB (N là trung điểm của AB)

          AM = CM = \(\dfrac{1}{2}\)AC (M là trung điểm của AC)

Mà AB = AC ( do tam giác ABC cân tại A)

=> AN = BN = AM = CM

Xét tam giác BNC và tam giác CMB:

+ BC chung

+ ^B = ^C (tam giác ABC cân tại A)

+ BN = CM (cmt)

=> Tam giác BNC = tam giác CMB (c-g-c)

=> ^NCB = ^MBC (2 góc tương ứng)

Hay ^KCB = ^KBC 

=> Tam giác BKC cân tai K

Xét tam giác ABC: M là trung điểm của AC (gt)

                              N là trung điểm của AB (gt)

=> MN là đường trung bình của tam giác ABC (định nghĩa đường trung bình trong tam giác)

=> MN // BC (TC đường trung bình trong tam giác)

a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔBNC và ΔCMB có 

BN=CM(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔBNC=ΔCMB(c-g-c)

b) Xét ΔANC và ΔABM có 

AN=AM(cmt)

\(\widehat{NAC}\) chung

AC=AB(ΔABC cân tại A)

Do đó: ΔANC=ΔABM(c-g-c)

\(\widehat{ACN}=\widehat{ABM}\)(hai góc tương ứng)

hay \(\widehat{NBK}=\widehat{MCK}\)

Xét ΔNBK có 

\(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)

Xét ΔMCK có

\(\widehat{MCK}+\widehat{MKC}+\widehat{CMK}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)

Từ (1) và (2) suy ra \(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=\widehat{MCK}+\widehat{MKC}+\widehat{CMK}\)

mà \(\widehat{NBK}=\widehat{MCK}\)(cmt)

và \(\widehat{NKB}=\widehat{MKC}\)(hai góc đối đỉnh)nên \(\widehat{BNK}=\widehat{CMK}\)Xét ΔNBK và ΔMCK có \(\widehat{BNK}=\widehat{CMK}\)(cmt)BN=CM(cmt)\(\widehat{NBK}=\widehat{MCK}\)(cmt)Do đó: ΔNBK=ΔMCK(g-c-g)⇒KB=KC(hai cạnh tương ứng)Xét ΔKBC có KB=KC(cmt)nên ΔKBC cân tại K(Định nghĩa tam giác cân)