Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà B,H,C thẳng hàng(gt)
nên H là trung điểm của BC(Đpcm)
b) Xét ΔAMB và ΔCME có
\(\widehat{AMB}=\widehat{CME}\)(hai góc đối đỉnh)
MA=MC(M là trung điểm của AC)
\(\widehat{BAM}=\widehat{ECM}\)(hai góc so le trong, AB//CE)
Do đó: ΔAMB=ΔCME(g-c-g)
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(M là trung điểm của AC)
AH là đường trung tuyến ứng với cạnh BC(H là trung điểm của BC)
BM cắt AH tại I(gt)
Do đó: I là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)
c, G là trọng tâm
⇒HG=13AH=2(cm)⇒HG=13AH=2(cm)
d, Ta có: BAHˆ=CAHˆBAH^=CAH^ ( theo a )
Mà FHGˆ=CAHˆFHG^=CAH^ ( so le trong và Hx // AC )
⇒FHGˆ=BAHˆ⇒FHG^=BAH^
Chúc mn sang năm mới học giỏi nha !
⇒ΔAFH⇒ΔAFHcân tại F
⇒FA=FH⇒FA=FH (1)
Lại có: FHBˆ=ACBˆFHB^=ACB^ ( đồng vị và Hx // AC )
Mà ABCˆ=ACBˆABC^=ACB^ ( t/g ABC cân tại A )
⇒FHBˆ=ABCˆ⇒FHB^=ABC^
hay FHBˆ=FBHˆFHB^=FBH^
⇒ΔFBH⇒ΔFBH cân tại F
⇒FB=FH⇒FB=FH
Từ (1), (2) ⇒FB=FA⇒FB=FA
⇒CF⇒CF là trung tuyến
Mà G là trọng tâm
⇒C,G,F⇒C,G,F thẳng hàng ( đpcm )
Vậy...
Có hình ko bạn
Nhìn như này loạn quá
Với lại cái đề nó cũng dài quá nữa cơ
Nhìn muốn xỉu luôn ý.
1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)
nên ΔBDH cân tại D
Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
2: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>BG là đường trung tuyến ứng với cạnh AC
mà E là trung điểm của AC
nên B,G,E thẳng hàng
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
b: Ta có: \(\widehat{DHA}=\widehat{HAC}\)(hai góc so le trong, DH//AC)
\(\widehat{DAH}=\widehat{HAC}\)(Cmt)
Do đó: \(\widehat{DHA}=\widehat{DAH}\)
=>ΔDAH cân tại D
c: Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó:D là trung điểm của AB
Trên tia đối của tia DC lấy K sao cho DK=DC
=>D là trung điểm của CK
Xét ΔDBK và ΔDAC có
DB=DA
\(\widehat{BDK}=\widehat{ADC}\)(hai góc đối đỉnh)
DK=DC
Do đó: ΔDBK=ΔDAC
=>BK=AC
Xét ΔCBK có BK+BC>CK
mà BK=AC và CK=2CD
nên AC+BC>2CD
=>\(CD< \dfrac{AC+BC}{2}\)