Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F D
Gọi F là trung điểm của AC
Xét tam giác \(ADC\)có:
B là trung điểm của AD (gt )
F là trung điểm của AC (h.vẽ )
\(\Rightarrow BF\)là đường trung bình của tam giác \(ADC\)
\(\Rightarrow BF=\frac{1}{2}DC\left(tc\right)\)(1)
Vì tam giác \(ÂBC\)cân tại A (gt)
\(\Rightarrow\widehat{B}=\widehat{C}\left(tc\right)\)
Ta có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\EB=\frac{1}{2}AB;FC=\frac{1}{2}AC\end{cases}}\)
\(\Rightarrow EB=FC\)
Xét \(\Delta BEC\)và \(\Delta CFB\)có:
\(\hept{\begin{cases}BCchung\\EB=FC\left(cmt\right)\\\widehat{B}=\widehat{C}\end{cases}}\Rightarrow\Delta BEC=\Delta CFB\left(c-g-c\right)\)
\(\Rightarrow BF=EC\)( 2 cạnh tương ứng ) (2)
Từ (1) và (2) \(\Rightarrow EC=\frac{1}{2}CD\)
Ta có:\(BK//DE\)
\(\Rightarrow\)\(\frac{DK}{KI}=\frac{BE}{BI}=\frac{BE}{CD}\left(BI=CD\right)\)
Mà: \(DE//BC\)
\(\Rightarrow\)\(\frac{AB}{BE}=\frac{AC}{CD}\Rightarrow\frac{BE}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{DK}{KI}=\frac{AB}{AC}\)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Cách 1:
A B C E D F
Gọi F là trung điểm AC, theo đề bài có ngay: BF là đường trung bình nên BF // EC và \(BF=\frac{1}{2}EC\)(1)
Ta lại dễ chứng minh \(\Delta\)BDC = \(\Delta\)CFB do đó BF = CD. (2)
Từ (1) và (2) suy ra đpcm.
Làm thêm 4 cách nữa bạn ơi