Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
Vì \(\left\{{}\begin{matrix}\text{E là trung điểm AB}\\\text{D là trung điểm AC}\end{matrix}\right.\)
mà AB=AC ( tam giác ABC cân tại A)
⇒ AE=BE=AD=DC
Vì \(\left\{{}\begin{matrix}\text{D là trung điểm AC}\\\text{F là trung điểm BC}\end{matrix}\right.\)
⇒ DF là đường trung bình tam giác ABC đáy AB
⇒ DF//AB mà DF=AE
⇒ AEFD là hình bình hành (1)
Vì BEDF là hình bình hành
⇒ BE=DF mà BE=AD
⇒ AD=DF (2)
Từ (1) và (2)
⇒ ADFE là hình thoi
Vì BEDF là hình bình hành (gt)
=> BE // DF , BE = DF
mà BE = AE (E là trung điểm AB)
=> AE = DF
Xét tứ giác ADFE có : AE = FD (cmt)
AE // FD (BE // FD mà E ∈ AB)
=> Tứ giác ADFE là hình bình hành
Vì tam giác ABC cân tại A có F là trung điểm BC
=> AF là đường cao của tam giác ABC
=> AF ⊥ BC (1)
Vì tứ giác BCDE là hình thang (gt)
=> BC // DE (2)
Từ (1) và (2) => AF ⊥ ED (từ vuông góc đến song song)
Xét hình bình hành ADFE có : AF ⊥ ED mà AF và ED là 2 đường chéo
=> hình bình hành ADFE là hình thoi (DHNB)
B A C M N E F Q
MK K QUEN VẼ TRÊN MÁY TÍNH LÊN HÌNH NÓ K ĐƯỢC CHUẨN , BẠN VẼ VOAFP VỞ THÌ CÂN CHÍNH XÁC HÔ NHÉ
bài làm
xét tám giác ABC có M là trung điểm của AB ; N là trung điểm của AC
áp dụng tc đường trung bình trong 1 tam giác ta có : MN // BC ; MN = \(\frac{1}{2}\) BC
Xét tứ giác BMNC ; có MN//BC ( cmt )
=> BMNC là thang( dn ............)
mà góc B = góc C ( tam giác ABC cân ) => BMNC là hình thang cân
có MN=\(\frac{1}{2}\) BC mà MN=6cm => BC=12
b)
có NM//BC => MN//BE (1)
có MN=\(\frac{1}{2}\)BC mà BE=\(\frac{1}{2}\) BC ( vì AE là đường trung tuyến => BE=EC=\(\frac{1}{2}\) BC )
=> MN=BE (2)
từ (1) và (2)
=> BMNE là hình bình hành ( 2 cạnh song song và = nhau)
c)
có tam giác ABC cân tại A => AB = AC
có AN=\(\frac{1}{2}AC\) ;\(AM=\frac{1}{2}AB\) mà AB=AC(cmt)
=> AN=AM
xét tứ giác AMEN có AM và AN là 2 cạnh kề mà AM=An => AMEN là hình thoi (dn............)
d)
có tam giác ABC cân tại A mà AE là đường trung tuyến => AE là đường cao => AE \(\perp BC\)
hay \(AF\perp BC\)
xét tứ giác ABFC có AF và BC là 2 đường chéo
mà \(AF\perp BC\)
=> ABFC là hình thoi (định nghĩa ......................)
e)
xét tứ giác AQCE
có AC và EQ là 2 đường chéo cắt tại N
mà N là trung điểm của AC ( đề bài )
N là trung điểm của EQ( tia đối )
=> AQCE là hình bình hành
mà AEC=900 ( vì \(AE\perp BC\left(cmt\right)\) )
=> AQCE là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)
~~~~~~~~~~~~~~~~my love~~~~~~~~
k chắc nha , chỗ nào k hỏi add + ib hỏi mk ,
1/
a/ Ta có : GA = GB ; HA = HC
=> GH là đường trung bình của tam giác ABC
b/ Vì GH là đường trung bình nên GH // BC
=> GHCB là hình thang
c/ Ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
\(\Rightarrow GH=\frac{1}{2}BC=\frac{5}{2}\)
d/ Hình thang nào cân?
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành
Đề sai rồi bạn