Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Xét tứ giác AEBM:
+ D là trung điểm của AB (gt).
+ D là trung điểm của ME (M là điểm đối xứng với E qua D).
\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).
\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).
Mà BE = EC (E là trung điểm của BC).
\(\Rightarrow\) AM = EC.
Xét tứ giác ACEM:
+ AM = EC (cmt).
+ AM // EC (AM // BE).
\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).
b) Xét tam giác ABC cân tại A:
AE là đường trung tuyến (E là trung điểm của BC).
\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).
Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).
\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).
c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).
\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).
\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)
a,
xét tam giác ABC có đường t/b DE:
=>DE//AC và DE=\(\dfrac{1}{2}\) AC
M là điểm đối xứng của DE:
=>DE+DM=AC
từ trên suy ra:
EM=AC và EM//AC
vậy ACEM là hình bình hành.
b,
Xét tam giác ABC là tam giác cân :
=>AB=AC
mà AC = ME
nên: AB =ME (1)
lại có: AM=MB , MD=DE(2)
từ (1) và (2) suy ra:
AEBM là hình chữ nhật.
c,
Xét tam giác ABC có BE=EC suy ra:
BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)
vì AEBM là hình chữ nhật nên:
góc AEB = 90\(^o\)<=> AEB là tam giác vuông
vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)
a: Xét tứ giác ABCE có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo AE
Do đó: ABCE là hình bình hành
mà AB=AC
nên ABCE là hình thoi
b: Xét tứ giác AECF có
AE//CF
AF//CE
Do đó: AECF là hình bình hành
a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
DH//AF
DH=AF(=AE)
Do đó: AFDH là hình bình hành
Câu 5:
\(A=-x^2+x-1=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{3}{4}\\ A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\left(đpcm\right)\)