Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔADE có AH/AD=AK/AE
nên HK//DE
c:
góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
góc MBC=góc HBD
góc MCB=góc KCE
mà góc HBD=góc KCE
nên góc MBC=góc MCB
=>ΔMBC cân tại M
Trên nửa mp bờ BC chứa A, dựng tam giác BNC vuông tại C, gọi K là giao điểm EN và AB
\(\left\{{}\begin{matrix}AC=EC\left(\Delta ACE.vuông.cân\right)\\BC=NC\left(\Delta BNC.vuông.cân\right)\\\widehat{ACB}=\widehat{NCE}\left(cùng.phụ.\widehat{ANC}\right)\end{matrix}\right.\Rightarrow\Delta ABC=\Delta ENC\left(c.g.c\right)\\ \Rightarrow\widehat{BAC}=\widehat{NEC}\\ \Rightarrow\widehat{BAC}+\widehat{KAC}=\widehat{NEC}+\widehat{KAC}=180^0\\ \Rightarrow\widehat{AKE}=360^0-\widehat{ACE}-\widehat{NEC}-\widehat{KAC}=90^0\\ \Rightarrow NE\perp AB\\ \left\{{}\begin{matrix}BD=NE\left(=AB\right)\\BD//NE\left(\perp AB\right)\end{matrix}\right.\Rightarrow BDNE.là.hbh\\ \Rightarrow BM=MN\)
Mà \(\Delta BCN\) vuông cân tại C nên \(\Delta BMC\) vuông cân tại M