Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: MB<MC+CB
=>MB+MA<MC+CB+MA<AC+CB
b: Xét ΔGDB và ΔKDC có
góc GDB=góc KDC
góc DGB=góc DKC
=>ΔGDB đồng dạng với ΔKDC
=>GD/KD=BD/DC=1
=>D là trung điểm của GK
=>GD=1/2GK=1/2AG
=>AG=2/3AD
=>G là trọng tâm của ΔACB
=>M là trung điểm của AC
a) Xét ΔBMC và ΔDMA có
MB=MD(gt)
\(\widehat{BMC}=\widehat{AMD}\)(hai góc đối đỉnh)
MC=MA(M là trung điểm của AC)
Do đó: ΔBMC=ΔDMA(c-g-c)
nên \(\widehat{MBC}=\widehat{MDA}\)(hai góc tương ứng)
mà \(\widehat{MBC}\) và \(\widehat{MDA}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔABM và ΔCDM có
MB=MD(gt)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc tương ứng)
MA=MC(M là trung điểm của AC)
Do đó: ΔABM=ΔCDM(c-g-c)
nên AB=CD(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên CD=AC
Xét ΔACD có AC=DC(cmt)
nên ΔACD cân tại C(Định nghĩa tam giác cân)
refer
https://lazi.vn/edu/exercise/1204537/cho-tam-giac-abc-can-tai-a-goi-m-la-trung-diem-cua-ac-tren-tia-doi-cua-tia-mb-lay-diem-d-sao-cho-dmbm
a: Xét ΔBMC và ΔDMA có
MB=MD
\(\widehat{BMC}=\widehat{DMA}\)
MC=MA
DO đó: ΔBMC=ΔDMA
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC
b: Ta có: DC=AB
mà AB=AC
nên DC=AC
hay ΔCAD cân tại C
a: Xét ΔBDA vuông tại D và ΔBEC vuông tại E có
BA=BC
góc B chung
=>ΔBDA=ΔBEC
b: ΔBDA=ΔBEC
=>BE=BD
=>ΔBED cân tại B
c: Xét ΔCAM có
CD vừa là đường cao, vừa là trung tuyến
=>ΔCAM cân tại C
=>góc CMD=góc CAM=góc ECA
xét tam giác AMB và AMD , có:
AM:chung
DAM=MAB
AD=AB(gt)
=> tam giác AMB = AMD (C.G.C.)
=> MB=MD
a) Xét \(\Delta ABM\)và \(\Delta ADM\)Có :
\(AB=AD\left(GT\right)\)(1)
\(\widehat{BAM}=\widehat{DAM}\)( Vì AM là tia phân giác) (2)
\(AM:\)Cạnh chung (3)
Từ (1) ; (2) và (3)
\(\Rightarrow\Delta ABM=\Delta ADM\left(c.g.c\right)\)
b)
Vì \(\Delta ABM=\Delta ADM\)( chứng minh ở câu a )
\(\Rightarrow AB=AD\)( Cặp cạnh tương ứng )
\(\Rightarrow\Delta BAD\)Cân
\(\Rightarrow\widehat{ABD}=\widehat{ADB}\)
Kẻ BD // HC
Ta có :
\(\widehat{ABD}=\widehat{BHC}\)( Vị trí đồng vị ) (1)
và \(\widehat{ADB}=\widehat{DCH}\)( Vị trí đồng vị ) (2)
Mà \(\widehat{ABD}=\widehat{ADB}\)( Chứng minh trên) (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\widehat{BHC}=\widehat{DCH}\)
\(\Rightarrow\Delta HAC\)Cân ( đpcm )
c) Bạn xem lại đề câu c nha .
d)
Vì \(\Delta ABM=\Delta ADM\)( chứng minh ở câu a )
\(\Rightarrow BM=DM\)( Cặp cạnh tương ứng )
Kẻ \(MI\perp AC\)
=> \(\widehat{IMN}+\widehat{C}=90\)
\(\Rightarrow\widehat{C}=90-\widehat{IMN}\)(1)
Ta có :
\(\widehat{MDC}=\widehat{MIC}+\widehat{IMD}\)
\(\Rightarrow\widehat{MDC}=90+\widehat{IMD}\)(2)
Từ (1) và (2)
\(\Rightarrow\widehat{MDC}>\widehat{C}\)
Xét \(\Delta DMN\)CÓ :
\(\widehat{MDN}>\widehat{C}\)(1)
\(\Rightarrow MN>MD\)( vì cạnh MN đối diện với góc lớn nhất trong tam giác ) (2)
Mà \(MD=MB\)( Chứng minh trên) (3)
Từ (1)(2) và (3)
\(\Rightarrow MC>MB\);
A) XÉT \(\Delta BAI\)VÀ \(\Delta BDI\)CÓ
BI LÀ CẠNH CHUNG
\(\widehat{BIA}=\widehat{BID}=90^o\)
\(AI=DI\left(gt\right)\)
=>\(\Delta BAI\)=\(\Delta BDI\)(C-G-C)
=> \(\widehat{ABI}=\widehat{DBI}\)HAY \(\widehat{ABC}=\widehat{DBC}\)
=> BC LÀ PHÂN GIÁC CỦA GÓC\(\widehat{ABD}\)
B) VÌ AI = DI (GT)
=> CI LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ACD\)
TA CÓ \(BM=CM\left(GT\right)\)
THAY \(BI+MI=CM\)
MÀ BI = MI (GT)
\(\Rightarrow2MI=CM\)
MÀ CI LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ACD\)
=> M LÀ TRỌNG TÂM CỦA \(\Delta ACD\)
TA CÓ DK = CK (GT)
=> AK LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ACD\)
=> AK BẮT BUỘT ĐI QUA TRỌNG TÂM M
=> A,K,M THẲNG HÀNG
a: Xét ΔBAM và ΔCAM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔBAM=ΔCAM
=>MB=MC
b: ΔABC cân tại A có AD là phân giác
nên AD vuông góc BC
Xét ΔBAM có
DA<DM
DA,DM lần lượt là hình chiếu của BA,BM trên AM
=>BA<BM