Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có O là TĐ của HE
I là trung điểm EC
OE/EH= EI/EC=1/2
⇒OI song² HC
MÀ HC vuông góc AH
⇒ OI vuông góc AH
b, xét ΔAHI
có DI vuông góc AH ⇒ OI là đường cao
HE vuông góc AI ⇒ HE là đường cao
⇒ O là trực tâm Δ AHI
⇒ AO là đường cao Δ AHI
⇒ AO vuông góc HI (1)
Xét Δ ABC cân tại A
có AH là đường cao
⇒ AH là trung tuyến
H là TĐ của BC
⇒ HC/BC = 1/2
có I là TĐ EC ⇒ IC/EC = 1/2
⇒ HC / BC = IC/EC ⇒HI song² BE (2)
Từ (1), (2) ⇒ AO vuông góc với BE
T.I.C.K CHO MÌNH VỚI NHÉ. MÌNH ĐẦU
a, xet tam giac EHC . co
+ O va I la trung diem HE va EC => OI la duong trung binh tam giac EHC
=> OI//HC
ma HC va AH
=> OI va AH [dpcm]
b, xet tam giac ABC ta co :
AH la duong cao dong thoi la trung tuyen ung voi day BC nen H la trung dim BC
xet tam giac BEC . ta co
H va I la trung diem BC va CE => HI la trung binh tam giac BEC
xet tam gic AIH co : OI va AH , HE va IO cat nhau cat nhau o O nen O la truc tam cua tam giac AHI
tu do [1] va [ 2] ta co AO va BE
A B C H E I O
a) Xét △EHC có : IE = IC
OE = OH
\(\Rightarrow\)OI là đương trung bình của △EHC
\(\Rightarrow\)OI // HC
Mà AH ⊥ HC
\(\Rightarrow\)OI ⊥ AH (ĐPCM)
b) Nối H với I , kéo dài OI ⊥ AH
Xét △AHI có : HE ⊥ AI tại E
IK ⊥ AH tại K
HE ∩ IK tại O
\(\Rightarrow\) O là trực tâm của tam giác AHI
\(\Rightarrow\)Đường AO là đường cao thứ 3 của tam giác
\(\Rightarrow\) AO ⊥ HI (1)
Vì △ABC cân tại A có AH là đường cao
\(\Rightarrow\)AH đồng thời là đường trung tuyến
\(\Rightarrow\)HB = HC
Xét △BEC có : IE = IC
HB = HC
\(\Rightarrow\)HI là đường trung bình của △BEC
\(\Rightarrow\)HI // BE (2)
Từ (1) và (2) suy ra : AO ⊥ BE (ĐPCM)
a, Xét tam giác EHC. có;
+ O và I là trung điểm HE và EC => OI là đường trung bình tam giác EHC
=> OI//HC
Mà HC⊥AH
=>OI⊥AH (đpcm)
b, Xét tam giác ABC có :
AH là đường cao đồng thời là trung tuyến ứng với đáy BC nên H là trung điểm BC
Xét tam giác BEC, có:
H và I là trung điểm BC và CE => HI là đường trung biình tam giác BEC
=> HI//BE. (1)
Xét tam giác AHI có :OI⊥AH, HE⊥AI mà HE và IO cắt nhau ở O nên O là trực tâm của △AHI
=> AO⊥HI (2)
+ Từ (1) và (2) ta có AO⊥BE
tu ve hinh :
a; b, xet tamgiac AMF va tamgiac AME co : AM chung
goc AFM = goc AEM = 90 do MF | AC va ME | AB (gt)
goc FAM = goc EAM do AM la phan giac cua goc BAC (gt)
=> tamgiac AMF = tamgiac AME (ch - gn)
=> AE = AF (dn) (1)
AB = AC do tamgiac ABC can tai A (gt)
AE + EB = AB
AF + FC = AC
=> EB = FC
xet tamgiac BEM va tamgiac CFM co : goc B = goc C do tamgiac ABC can tai A (gt)
goc MEB = goc MFC do ...
=> tamgiac BEM = tamgiac CFM (cgv - gnk)
=> MB = MC
c, (1) => tamgiac AEF can tai E (dn)
=> goc AEF = (180 - goc BAC) : 2
tamgiac ABC can tai A (gt) => goc B = (180 - goc BAC) : 2
=> goc AEF = goc B ma 2 goc nay dong vi
=> EF // BC (dh)
Giải
Bạn tự vẽ hình
a; b, Xét \(\Delta AMF\) va \(\Delta AME\) có : AM chung
\(\widehat{AFM}=\widehat{AEM}=90^0\) do MF\(\perp\)AC va ME\(\perp\)AB
\(\widehat{FAM}=\widehat{EAM}\)do AM la phân giác của \(\widehat{BAC}\)
\(\Rightarrow\Delta AFM=\Delta AME\)
\(\Rightarrow AE=AF\) (1)
AB = AC do \(\Delta ABC\) cân tại A
AE + EB = AB
AF + FC = AC
\(\Rightarrow\) EB = FC
Xét \(\Delta BEM\) và \(\Delta CFM\) có : \(\widehat{B}\) = \(\widehat{C}\) do \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{MEB}=\widehat{MFC}\)
\(\Rightarrow\Delta BEM=\Delta CFM\)
\(\Rightarrow\) MB = MC
c, Từ (1) suy ra \(\Delta AEF\)cân tại E
\(\Rightarrow\widehat{AEF}=\left(180-\widehat{BAC}\right)\div2\)
\(\Delta ABC\) cân tại A \(\Rightarrow\)\(\widehat{B}\)= (180 - \(\widehat{BAC}\)) : 2
\(\Rightarrow\widehat{AEF}=\widehat{B}\) mà hai góc này đồng vị
\(\Rightarrow EF//BC\)
a. Xét tam giác HEC có O, I lần lượt là trung điểm của HE, CE nên OI là đường trung bình của tam giác HEC.
=> OI song song HC mà AH vuông góc với HC
=> OI vuông góc với AH
b)
Gọi giao điểm của BE với AH và AO lần lượt là M, N
Xét HAB và EHC
=> AO vuông góc với BE
HỌC TỐT NHÉ
A B C H E O