Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì Δ ABC cân tại A
=> góc ABC= góc ACB
Xét ΔKBC và ΔHCB, có:
góc KBC= góc HCB (góc ABC= góc ACB)
BC chung } => ΔKBCΔHCB (cạnh huyền-góc nhọn)
góc BKC= góc CHB
=>BH=CK( 2 cạnh tg ứng)
b) Xét ΔABC, có : đường cao BH và CK cắt nhau tại I
=> I là trự tâm của ΔABC
=> AI là đường cao ΔABC (1)
Mà ΔABC cân tại A (2)
Từ (1) và (2) => AI là phân giác goac BAC
c)Xét tứ giác BKHC, có :góc KBC = góc HCB ( góc ABC= góc ACB)
=> tứ giác BKHC là hình thanh cân
Vậy ....................
a) Xét \(\Delta\)ABH và \(\Delta\)ACK, có:
góc BAC chung
AB=AC(\(\Delta\)ABC cân) }=> \(\Delta\)ABH và \(\Delta\)ACK(cạnh huyền-góc nhọn)
góc K= góc H(=90 độ)
Vậy \(\Delta\)ABH và \(\Delta\)ACK
b) Vì \(\Delta\)ABH và \(\Delta\)ACK(c/m trên)
=> AK=AH(2 cạnh tg ứng)
Ta có: AB= AK+BK
AC= AH+CH
Mà AB=AC(\(\Delta\)ABC cân)
AK=AH(c/m trên)
=> BK=CK
Vậy BK=CK
c) Xét \(\Delta\)ABC, có:
BH là đường cao thứ nhất
CK là đường cao thứ hai
Mà BH cắt Ck tại I
=> I là trực tâm \(\Delta\)ABC
=> AI là đường cao \(\Delta\)ABC
=> AI vuông góc BC
Vậy AI vuông góc BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: Xet ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chug
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM vuông góc BC
nen IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên HK//BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
A B C H K
a) Chứng minh BH=CK nhé( Đề em viết sai)
Vì tam giác ABC cân tại A suy ra AB=AC, góc B=góc C (T/c tam giác cân)
Xét tam giác vuông AHB và tam giác vuông AKC
có góc BAC chung
AB=AC (CMT)
suy ra tam giác AHB = tam giác AKC (cạnh huyền-góc nhọn)
suy ra BH = CK (hai cạnh tương ứng)
AH = AK (hai cạnh tương ứng)
b) Xét tam giác vuông AIH và tam giác vuông AIK
có AI chung
AH=AK (CMT)
suy ra tam giác AIH và tam giác AIK (cạnh huyền-cạnh góc vuông)
suy ra góc KAI=góc HAI (hai góc tương ứng), mà I nằm trong tam giác ABC
suy ra AI là tia phân giác của góc BAC
c) vì tam giác ABC cân tại A suy ra góc A+2.góc B=1800 suy ra \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Ta có AH=AK suy ra tam giác AHK cân tại A suy ra góc AKH=góc AHK
suy ra góc A +góc AKH+góc AHK=1800
suy ra góc A+2.góc AKH=1800suy ra \(\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\) (3)
Từ (2) và (3) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà góc AKH đồng vị với góc ABC
suy ra HK//BC