K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2020

A B C D K I O E

* Giả thiết kết luận bạn tự trình bày nhé

a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật

b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD 

=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE

c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD

\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)

d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang 

Để AKDE là hình thang cân thì KD = AE

Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)

\(\Rightarrow\Delta ABC\)là tam giác đều

a: Xét tứ giác AECD có

O là trung điểm của AC

O là trung điểm của ED

Do đó: AECD là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên AECD là hình chữ nhật

19 tháng 12 2022

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

góc ADC=90 độ

Do đó: ADCE là hình chữ nhật

b: Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

c:BD=CD=BC/2=6cm

AO=OD=10/2=5cm

AD=8cm

P=(5+5+8)/2=18/2=9cm

\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)

19 tháng 12 2022

giúp em phần d ạ

19 tháng 12 2022

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

góc ADC=90 độ

Do đó: ADCE là hình chữ nhật

b: Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

c:BD=CD=BC/2=6cm

AO=OD=10/2=5cm

AD=8cm

P=(5+5+8)/2=18/2=9cm

\(S=\sqrt{9\cdot\left(9-8\right)\left(9-5\right)\left(9-5\right)}=\sqrt{9\cdot1\cdot4\cdot4}=3\cdot2\cdot2=12\left(cm^2\right)\)

19 tháng 12 2022

giup em phần d ạ

 

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...