K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

A B C E H F D K M O N

MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)

=> góc FMB = góc ACB (đồng vị)

mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)

=> góc FMB = góc ABC 

xét tam giác BDM và tam giác MFB có : BM chung 

góc BDM = góc BFM = 90

=> tam giác BDM = tam giác MFB (ch-gn)

=> BD = FM (đn)       (1)

xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM  = 90

=> FHEM là hình chữ nhật  (dh)

=> FM = HE (tc)    và (1)

=> BD = HE       (2)

kẻ DO // AC 

=> góc BOD = góc ACB  (đồng vị)

góc ACB = góc ABC (cmt)

=> góc DBO = góc DOB  

=> tam giác DOB cân tại D (dh)

=> BD = DO    và (2)

=> DO = HE 

mà HE = CK (gt)

=> DO = CK       (3)

gọi DK cắt BC tại N

xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)

góc ODN = góc NKC do DO // AC (cách vẽ)    và (3)

=> tam giác DNO = tam giác KNE (g-c-g)

=> DN = NK (đn)

mà N nằm giữa D và K 

=> N là trung điểm của DK 

N thuộc BC 

=> BC đi qua trung điểm của DK

8 tháng 1 2020

Tự vẽ hình nha

a) Xét tam giác AMB và tam giác AMC có:

AM chung

góc BAM = góc CAM ( AM là tia p.g góc BAC )

AB=AC(gt)

=> tam giác AMC = tam giác AMC (c-g-c) Đpcm

b) Vì AB=AC => tam giác ABC cân tại A, mà AM là tia phân giác của góc A => M là trung điểm BC

Xét tam giác AMB và tam giác DMC có

AM=DM (gt)

AMB=DMC ( đối đỉnh )

BM=CM ( M là trung điểm BC )

=> tam giác AMB = tam giác DMC (c-g-c)

=> góc BAM = góc CDM ( 2 góc tương ứng )

mà góc BAM và góc CDM ở vị trí so le trong

=>AB // CD

10 tháng 1 2020

i lam dc cau c) va cau d) ko??

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!

6 tháng 1 2020

a) ta có AB=AC

=> TAM GIÁC ABC CÂN TẠI A

=> B=C

XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ

                         AB  =  AC(GT)

                          B   =  C (CMT)

                        BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)

=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)

6 tháng 1 2020

B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)

\(BM=MC\left(GT\right)\)

\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)

\(MA=ME\left(GT\right)\)

\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)

\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AC//BE\)

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE