Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BD=BC/2=12/2=6
Vậy BC=6cm
Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:
\(AB^2+BD^2=AD^2\)
\(10^2+6^2=136\)
=> AD=\(\sqrt{136}\)
b) Tam giác ABC cân tại A, đường cao AD
=> AD là đường phân giác góc BAC (1)
Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.
=> AG là pg góc BAC (2)
Từ (1) và (2) => AG và AD trùng nhau.
=>A, G, D thẳng hàng
a: BD=CD=6cm
=>AD=8cm
b: Ta có: ΔABC cân tại A
mà AD là đường cao
nên Dlà trung điểm của BC
=>A,G,D thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
Do đó: ΔABG=ΔACG
a) Xét tam giác ABC cân tại A
có: AD là đường cao ứng với cạnh BC (gt)
=> AD là đường trung tuyến của BC ( tính chất của tam giác cân)
=> BD = CD
mà \(D\in BC\)
=> BD + CD = BC
=> BD + BD = BC
2 BD = BC
thay số: 2.BD = 12
BD = 12 :2
BD = 6 cm
Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)
thay số: \(6^2+AD^2=10^2\)
\(AD^2=10^2-6^2\)
\(AD^2=64\)
\(\Rightarrow AD=8cm\)
b) ta có: G là trọng tâm của tam giác ABC
=> BG là đường trung tuyến của AC ( định lí)
mà AD là đường trung tuyến của BC ( phần a)
=> AD cắt BG tại G ( định lí)
=> A,G,D thẳng hàng
c) Xét tam giác ABC cân tại A
có: AD là đường cao ứng với cạnh BC (gt)
=> AD là đường phân giác của góc BAC ( tính chất trong tam giác cân)
=> góc BAG = góc CAG( tính chất phân giác)
Xét tam giác ABG và tam giác ACG
có: AB = AC ( gt)
\(\widehat{BAG}=\widehat{CAG}\left(cmt\right)\)
AG là cạnh chung
\(\Rightarrow\Delta ABG=\Delta ACG\left(c-g-c\right)\)
sorry bn nha! nhưng mk ko bít kẻ hình trên này, bn kẻ giúp mk nhé!
a) theo đề bài ta có: tam giác ABC cân tại A nên cạnh AB=ACmà AB=10 cm => AC= 10 (cm)
Vì tam giác ABC cân nên đường cao AD sẽ tạo ra 1 đường chính giữa AB chia thành 2 phần bằng nhau ( gọi là đường trung trực)
=> BD=DC=\(\frac{12}{2}\) = 6 cm
Theo định lí Pytago ta có:
102 - 62 = 100 - 36 =64 cm => \(\sqrt{64}\) = 8 cm Vậy cạnh AC = 10 cm; AD= 8 cm
b)AD là đường trung tuyến . G là trọng tâm => G thuộc AD => A,H,G thẳng hàng
c) Xét tam giác ABG và tam giác ACG:
Có : AB=AC (theo câu a)
AG chung
GB = GC ( vì G là trọng tâm nên cách đều 3 cạnh của tam giác)
Vậy tam giác ABG= tam giác ACG ( cạnh-cạnh-cạnh)
CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ
tự kẻ hình nha
a) xét tam giác ABH và tam giác ACH có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác ABH= tam giác ACH( ch-gnh)
b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)
=>HB=HC=BC/2=12/2=6cm
ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2
=> AH=8 (AH>0)
d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến
mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng
c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC
vì G thuộc AH=> GB=GC
xét tam giác ABG và tam giác ACG có
AB=AC(gt)
GB=GC( cmt)
AG chung
=> tam giác ABG= tam giác ACG(ccc)
chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu
a) Vì tam giác ABC cân nên : AB = AC (gt)
AH chung (gt)
H vuông (gt)
=> Tam giác ABH = tam giác AHC ( cạnh huyền và cạnh góc vuông)
b) Vì tam giác ABC cân nên đường cao AH sẽ tạo ra một đường chính giữa AB chia thành 2 phần bằng nhau ( cái này gọi là đường trung trực ) => BH = HC = \(\frac{12}{2}\)= 6 cm.
Áp dụng định lí Pi ta go ta có:
102 - 62 = 64 => \(\sqrt{64}\) = 8 . Vậy AH bằng 8 cm.
c) Xét 2 tam giác ABG và tam giác AGC có:
AG chung (gt)
AB = AC (gt)
Vì G là trọng tâm của tam giác => G cách đều 3 cạnh cảu tam giác, điều đó có nghĩa là:
GA = GB = GC
=> GB = GC => Tam giác ABG = ACG