\(\widehat{A}=70\) độ. Gọi M, N, E lần lượt là trung điểm c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

a) Xét tam giác ABC có :

M là trung điểm của AB

N là trung điểm của AC

=> MN là đường trung bình của tam giác ABC

=> MN // BC

Hay tứ giác BMNC là hình thang (1)

Ta lại có tam giác ABC cân

=> ^B=^C (2)

Từ (1),(2) suy ra tứ giác BMNC là hình thanh cân

Vì tam giác ABC cân

=> (1800-^A)= ^B=^C

Hay ^B=^C=550

Vì tứ giác BMNC là hình thang cân

=> (3600-^B-^C):2=^BMN=^MNE

Hay ^BMN=^MNE=1500

Vậy...

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

27 tháng 10 2018

B A C M N E F Q

MK K QUEN VẼ TRÊN MÁY TÍNH LÊN HÌNH NÓ K ĐƯỢC CHUẨN , BẠN VẼ VOAFP VỞ THÌ CÂN CHÍNH XÁC HÔ NHÉ 

                                                               bài làm

xét tám giác ABC          có M là trung điểm của AB ; N là trung điểm của AC  

áp dụng tc đường trung bình trong 1 tam giác ta có : MN // BC ; MN = \(\frac{1}{2}\) BC

Xét tứ giác BMNC ; có MN//BC ( cmt )

                   => BMNC là thang( dn ............)

mà góc B = góc C ( tam giác ABC cân ) => BMNC là hình thang cân

có MN=\(\frac{1}{2}\) BC mà MN=6cm => BC=12

b)

có NM//BC => MN//BE   (1)

có MN=\(\frac{1}{2}\)BC  mà BE=\(\frac{1}{2}\) BC ( vì AE là đường trung tuyến => BE=EC=\(\frac{1}{2}\) BC  ) 

=> MN=BE         (2)

 từ (1) và (2)

=> BMNE là hình bình hành ( 2 cạnh song song và = nhau)

c)

có tam giác ABC  cân tại A => AB = AC  

có AN=\(\frac{1}{2}AC\) ;\(AM=\frac{1}{2}AB\)  mà AB=AC(cmt)

=> AN=AM

xét tứ giác AMEN có AM và AN là 2 cạnh kề mà AM=An => AMEN là hình thoi (dn............)

d)

có tam giác ABC cân tại A mà AE là đường trung tuyến => AE là đường cao => AE \(\perp BC\)

hay \(AF\perp BC\)

xét tứ giác ABFC có AF và BC là 2 đường chéo

mà \(AF\perp BC\)

=> ABFC là hình thoi (định nghĩa ......................)

e)

xét tứ giác AQCE 

có AC và EQ là 2 đường chéo cắt tại N

mà N là trung điểm của AC ( đề bài )

N là trung điểm của EQ( tia đối )

=> AQCE là hình bình hành 

mà AEC=900 ( vì \(AE\perp BC\left(cmt\right)\) )

=> AQCE là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)

~~~~~~~~~~~~~~~~my love~~~~~~~~

k chắc nha , chỗ nào k hỏi add + ib hỏi mk ,