Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCDE cân tại C
b:
Ta có: ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
=>\(\widehat{BFC}=\dfrac{180^0-\widehat{FBC}}{2}=\dfrac{180^0-45^0}{2}=67,5^0\)
=>\(\widehat{BFC}>\widehat{CBF}\)
c: Ta có: ΔBFC cân tại B
mà BH là đường cao
nên H là trung điểm của CF
Xét tứ giác DCEF có
H là trung điểm chung của DE và CF
=>DCEF là hình bình hành
=>DF//CE
a, CM tam giác ACH = tam giác KCH
Xét tam giác ACH và tam giác KCH, có:
- AH = KH (H là trung điểm AK)
- góc AHC = góc KHC = 90 độ
- cạnh HC chung
=> tam giác ACH = tam giác KCH (đpcm)
b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC
Xét tam giác AEC và tam giác DEB, có:
- AE = DE (giả thiết)
- BE = CE (E là trung điểm BC)
- góc AEC = góc DEB (2 góc đối nhau)
=> tam giác AEC = tam giác DEB
=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)
=> DB // AC (so le trong) (đpcm)
c, EB là phân giác của góc AEK
Xét tam giác EHA và tam giác EHK, có:
- EH chung
- góc EHA = góc EHK = 90 độ
- HA = HK (H là trung điểm AK)
=> tam giác EHA = tam giác EHK
=> EA = EK => tam giác EAK cân tại E
mà H là trung điểm AK
=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK
Ta có EH là phân giác của góc AEK
mà B,H,E thẳng hàng
=> EB là phân giác của góc AEK (đpcm)
d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng
(chưa nghĩ ra)
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)