Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BAC}=180^0-80^0-40^0=60^0\)
\(\widehat{CAD}=\dfrac{60^0}{2}=30^0\)
=>\(\widehat{ADC}=180^0-30^0-40^0=110^0\)
b: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
* Xét tam giác ADB và tam giác ADE, ta có:
- AB = AE(gt)
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt)
- Chung cạnh AD
=> Tam giác ADB = Tam giác ADE(c-g-c) (1)
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)
tk nha bạn
thank you bạn
(^_^)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Góc A=100 độ --> gócACB=40 độ --> gócOCB=40/2=20 độ
dựng tam giác đều BCD (D và A cùng phía với BC). Tam giác ADC=BCO vì gócOCB=góc ACD=20độ; CD=BC và góc CBO=CDA=30độ (g.c.g) ---> AC=CO --> tg ACO cân tại C (với góc ACO=20 độ) --> góc CAO= (180-20)/2=80 độ
đúng cái nhé