Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: AB=căn 4^2+3^2=5cm
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
=>M là trung điểm của AB
Xét ΔABC có
CM,AH là trung tuyến
CM cắt AH tại G
=>G là trọng tâm
a, Xét tam giác ABH và tam giác ACH có
góc bah =góc cah
ab =ac
góc B = góc C
=> tam giác abh = tam giác ach (g.c.g)
=>hb=hc
=>góc ahb = góc ahc
Mà góc AHB + góc AHC=180 độ
=>ah vuông góc với bc
b,bh=hc=36:2=18cm
áp dụng định lí PY-TA-GO vào tam giác ABH ta có
ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah=24cm
a) xét tam giác BAH và tam giác HAC có:
AB = AC (gt)
góc A1 = góc A2 ( vì AH là p/giác)
AH chung
=> tam giác BAH = tam giác HAC ( c.g.c)
=> HB = HC
ta có: góc AHB + góc AHC = 1800 ( kề bù)
=> 2 góc AHB = 1800
=> góc AHB = \(\frac{180^0}{2}=90^0\)
=> AH vuông góc BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=4^2+3^2=25\)
hay AB=5(cm)
Vậy: AB=5cm
Hỏa Long Natsu bác eii, cái bài này là ae mk tự vẽ hình hay sao ý.
a) Xét \(\Delta AHB\text{ và }\Delta AHC\)
\(AB=AC\)
\(\widehat{A_1}=\widehat{A_2}\)
AH là cạnh chung
Nên: \(\Delta AHB=\Delta AHC\left(c-g-c\right)\)
\(\Rightarrow BH=CH\left(2\text{ cạnh tương ứng}\right)\)
\(\Rightarrow\Delta ABC\perp AH\left(\text{là phân giác cũng vừa là đường cao}\right)\)
\(\Rightarrow AH\perp BC\)
b) \(BH=\frac{36}{2}=18\left(cm\right)\)
\(AB^2=AH^2+BH^2\left(\text{áp dụng định lý Py-Ta-Go}\right)\)
\(AH^2=AB^2-BH^2\)
\(AH^2=30^2-18^2\)
\(AH^2=576\)
\(\Rightarrow AH=\sqrt{576}=24\left(cm\right)\)
c) \(AG=\frac{2}{3}.AH\)
\(\Rightarrow AH.\frac{2}{3}=24.\frac{2}{3}=16\left(cm\right)\)
\(AM=\frac{AB}{2}=\frac{30}{2}=15\left(cm\right)\)
\(\Rightarrow BA^2=AM^2+BM^2\)
\(\Rightarrow MB^2=BA^2-BM^2\)
\(MB^2=30^2-15^2\)
\(MB^2=\sqrt{675}=26\)
d) Bạn tự giải nha
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AB=5cm
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
Xét ΔABC có
CM là đường trung tuyến
AH là đườg trug tuyến
AH cắt CM tại G
Do đó: G là trọng tâm