K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2022

a) Vì △ABC là tam giác cân tại A nên AD vừa là đường trung tuyến, đường trung trực, đường phân giác, đường cao (*). Vì vậy nên D là trung điểm của BC

Xét △BDM và △CDN có:

     Góc BMD = góc CND = 90o (theo GT)

     BD = CD (theo c/m trên)

     Góc B = Góc C (theo GT)

=> △BMD = △CND (cạnh huyền - góc nhọn)

b) Ta có: AM = AB - BM ; AN = AC - CN mà AB = AC; BM = CN

=> AM = AN

1.Cho tam giác ACB vuông tại A, lấy điểm D trên cạnh BC, kẻ DM vuông góc AB, DN vuông góc AC (M thuộc AB, N thuộc AC). Lấy các điểm I và K sao cho M và N tương ứng là trung điểm của DI vad DK. Chứng minh: a, Tam Giác AMD= Tam giác AMI             b, Tam giác AND= tam giác AKN                       c, Ba điểm I,A,K thẳng hàng d, A là trung điểm của IK                                                   e, Nếu AD là phân giác của góc...
Đọc tiếp

1.Cho tam giác ACB vuông tại A, lấy điểm D trên cạnh BC, kẻ DM vuông góc AB, DN vuông góc AC (M thuộc AB, N thuộc AC). Lấy các điểm I và K sao cho M và N tương ứng là trung điểm của DI vad DK. Chứng minh: 

a, Tam Giác AMD= Tam giác AMI             b, Tam giác AND= tam giác AKN                       c, Ba điểm I,A,K thẳng hàng 

d, A là trung điểm của IK                                                   e, Nếu AD là phân giác của góc A thì AD vuông góc IK.

2. Cho tam giác ABC có AB=AC và M là trung điểm của BC. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.

a, Vẽ hình 

b, Chứng minh : tam giác BEM=tam giác CFM 

c, Chứng minh Am là đường trung trực của EF.

d, Từ B kẻ đương thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh: ba điểm A,M,D thẳng hàng.

0
12 tháng 4 2021

a) Ta có: \(AH\) là phân giác \(\widehat{EAF},AH\perp EF\rightarrow\Delta AEF\)cân tại \(A\)

b) Kẻ \(BG//AC,G\in EF\rightarrow\widehat{BGK}=\widehat{GKF}\)

Ta có: \(BK//EF\rightarrow\widehat{BKG}=\widehat{KGF}\)

Mà \(\Delta BKG,\Delta FGK\)chung cạnh \(KG\)

\(\rightarrow\Delta BKG=\Delta FGK\left(g.c.g\right)\)

\(\rightarrow BG=KF\)

Ta có: \(BG//AC\rightarrow\widehat{GBM}=\widehat{MCF}\)

Mà \(BM=MC\)vì \(M\)là trung điểm \(BC,\widehat{BMG}=\widehat{FMC}\)

\(\rightarrow\Delta BMG=\Delta CMF\left(c.g.c\right)\)

\(\rightarrow BG=CF\)

\(\rightarrow KF=CF\left(=BG\right)\)

c) Ta có: \(BG//AC\)

\(\rightarrow\widehat{BGE}=\widehat{AFE}=\widehat{AEF}=\widehat{BEG}\)

\(\rightarrow\Delta BGE\)cân tại \(B\rightarrow BE=BG\)

\(\rightarrow BE=CF\)

Mà \(AE=À,AE=AB+BE,AF=AC-C\)

\(\rightarrow AE+AF=AB+BE+AC-CF\)

\(\rightarrow2AE=AB+AC\)vì \(BE=CF\)

\(\rightarrow AE=\frac{AB+AC}{2}\)

12 tháng 4 2021

help me mọi người ơi ai xong đầu tiên mk k cho

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

a: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có 

MB=MC

\(\widehat{EBM}=\widehat{FCM}\)

Do đó: ΔMEB=ΔMFC

Suy ra:ME=MF và EB=FC

Ta có: AE+EB=AB

AF+FC=AC

mà AB=AC

và EB=FC

nên AE=AF

Ta có: AE=AF

nên A nằm trên đường trung trực của FE(1)

Ta có: ME=MF

nên M nằm trên đường trung trực của FE(2)

từ (1) và (2) suy ra AM là đường trung trực của FE

hay AM\(\perp\)FE

a: Xét ΔADB và ΔADC có

AB=AC

góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>MD=DN

=>ΔDMN cân tại D

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại Da) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng ABb) tam giác DMC là tam giác jk ? vì sao ?2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM...
Đọc tiếp

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại D

a) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng AB

b) tam giác DMC là tam giác jk ? vì sao ?

2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM vuông góc với BC ( M thuộc BC ) gọi N là gia điểm của AB và MH chúng minh

a) tam giác ABH bằng tam giác MBH

b) BH là đương trung trực cyar đoạn thẳng AM

c) AM//CN

d) BH vuông góc với CN

3) cho tam giác ABC vuông tại C có góc A = 60 và đường phân giác cua góc BAC cắt BC tại E kẻ EK vuông góc với AB tại K ( K thuộc AB ) kẻ BD vuông góc với AE tại D ( D thuộc AE ) chứng minh

a) tam giác ACE bằng tam giác AKE

b)AE là đường trung trực của đoạn thẳng CK

c) KA=KB

4) cho tam giác ABC có góc A = 90 vẽ phân giác BD và CE ( D thuộc ac , E thuộc AB ) chúng cắt nhau tại O

a) tính số đo góc BOC

b) trên BC lấy M,N sao cho BM=BA, CN=CA chứng minh EN//DM

c) gọi I là giao điểm của BD VÀ AN . chứng minh tam giác AIM vuông cân

5) cho tam giác ABC ( AB=AC ) gọi K là trung điểm của BC

a) chứng minh tam giác AKB tam giác AKC và AK vuông góc với BC

b) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E chúng minh EC //AK

c) tam giác BCE là tam giác jk ? tính góc BEC

6) cho tam giác ABC biết AB < BC trên tia BA lấy điểm D sao cho BC= BD nối C với D . phân giác góc B cắt cạn AC , DC lần lượt ở E và I 

a) chứng minh tam giác BED = tam giác BEC và IC=ID

b) từ A vẽ đường vuông góc AH với DC ( H thuộc DC ) . chứng minh AH//BL

       VẼ HÌNH VÀ GIẢI CHI TIẾT CÁC BAI HỘ MÌNH NHA

 

5
14 tháng 2 2018

3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)

a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))

Cạnh huyền AE chung

=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)

b/ Ta có \(\Delta ACE\)\(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)

Gọi M là giao điểm của AE và CK.

\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)

\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))

Cạnh AM chung

=> \(\Delta ACM\)\(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)

\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)

Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)

=> 2\(\widehat{AMC}\)= 180o

=> \(\widehat{AMC}\)= 90o

=> AM \(\perp\)CK (2)

Từ (1) và (2) => AE là đường trung trực của CK (đpcm)

14 tháng 2 2018

tsk nha