K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}\)(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

20 tháng 1 2017

sao khó vậy

20 tháng 1 2017

mk học nhà cô, cô cho zậy đó

14 tháng 12 2021

a) Tứ giác AHCE có 

     AD = DC

     HD = DE

=> AHCE là hình bình hành

     H =90°

=> AHCE là hình chữ nhật

b) Vì ∆ABC cân tại A

    =>AB = AC

Mà AC = HE (AHCE là hình chữ nhật)

=> AB = HE

Mình mới làm tới câu b thôi

 

 

21 tháng 12 2021

Bài 3: 

a: Xét tứ giác AHBF có

E là trung điểm của AB

E là trung điểm của HF

Do đó: AHBF là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBF là hình chữ nhật

a) Xét tứ giác AKCH có : 

AD = DC ( D là trung điểm AC )

HD = DK ( K là điểm đối xứng của H qua D )

=> AKCH là hình bình hành (1)

Xét ∆ vuông AHC có : 

HD là trung truyến 

=> HD = AD = DC 

Mà HD + DK = HK 

AD + DC = AC 

=> HK = AC (2)

Từ (1) và (2) => AKCH là hình chữ nhật 

b) Xét ∆ABC có : 

E là trung điểm AB 

D là trung điểm BC 

=> ED là đường trung bình ∆ABC 

=> ED //BC

Xét ∆ABC có : 

E là trung điểm AC

I là trung điểm BC

=> EI là đường trung bình ∆ABC 

=> EI//AC , EI = \(\frac{1}{2}AC\)

Xét tứ giác EDCI có :

ED// IC ( I \(\in\)BC )

EI//DC ( D \(\in\)AC)

=> EDCI là hình bình hành 

c) Vì ED //HI ( H , I \(\in\)BC )

=> EDIH là hình thang

Vì EI = \(\frac{1}{2}AC\)(cmt)

Mà HD = AD = DC (cmt)

=> HD = \(\frac{1}{2}AC\) 

=> EI = HD 

Mà EDIH là hình thang 

=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )

10 tháng 5 2020

Phần d có ai làm được không ạ?

23 tháng 12 2023

a: Ta có: ΔBAC cân tại B

mà BO là đường trung tuyến

nên BO\(\perp\)AC

Xét tứ giác ABCD có

O là trung điểm chung của AC vàBD

=>ABCD là hình bình hành

Hình bình hành ABCD có BA=BC

nênABCD là hình thoi

b: Ta có:ABCD là hình bình hành

=>AD//BC  và AB//CD

Ta có: AD//BC

F\(\in\)AD

E\(\in\)BC

Do đó: DF//BE

Ta có: AD//BC

BF\(\perp\)AD

Do đó: BF\(\perp\)BC

ta có: BF\(\perp\)BC

DE\(\perp\)BC

Do đó: BF//DE

Xét tứ giác BFDE có

BF//DE

BE//DF

Do đó: BFDE là hình bình hành

Hình bình hành BFDE có BF\(\perp\)FD

nên BFDE là hình chữ nhật

c: Xét ΔBDK có

KO,BE là các đường cao

KO cắt BE tại C

Do đó: C là trực tâm của ΔBDK

=>DC\(\perp\)BK tại M

mà KM\(\perp\)CD tại M

và BK,KM có điểm chung là K

nên B,K,M thẳng hàng 

23 tháng 12 2023

còn câu d) thì sao

23 tháng 4 2020

a)ta có : A=E=F=90 => AEHF hình chữ nhật

b)ta có: Am=AN, HM=MC =>ACNH hbh

Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân 

c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3

=>AN=3AG