Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác BHCK có
D là trung điểm của BC
D là trung điểm của HK
Do đó: BHCK là hình bình hành
mà BC\(\perp\)HK
nên BHCK là hình thoi
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME