Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
or no I don't
..................
sorry
a) BM,CN là trung tuyến=> M trung điểm AC, N trung điểm AB
=> MN là đường trung bình tam giác ABC=> MN//BC=> BNMC là hình thang.
b) MN là đường trung bình tam giác ABC => MN=1/2.BC
c) Vì tam giác ABC cân tại A nên AH cũng là trung tuyến=> H trung điểm BC=> BC=2BH
Định lí PYTAGO cho tam giác AHB vuông tại H
\(\Rightarrow AB^2=AH^2+HB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=4cm\)
\(\Rightarrow BC=2BH=8cm\)
\(\Rightarrow MN=\frac{1}{2}BC=4cm\)
M trung điểm AC, N trung điểm AB \(\Rightarrow NB=MC=\frac{1}{2}AB=2,5cm\)
=> Chu vi BNMC=MN+NB+BC+CM=4+2,5+8+2,5=17cm
CORONA mà đi học à bạn ?!
ΔABC cân tại A, suy ra :
Góc B = Góc C; AB=AC; Góc B = (180 độ - góc A)/2 (1)
Ta có: AM=1/2AC; AN=1/2AB
=> AM=AN(Vì AB=AC)
=> Tam giác AMN cân tại A
=> Góc AMN = (180 độ - góc A)/2 (2)
Từ (1) và (2) => Góc B = Góc AMN
=> MN//BC (Góc B; Góc AMN ở vị trí đồng vị)
=>BNMC là hình thang.
Mà: Góc B = Góc C
=> BNMC là hình thang cân
a: Xét ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Do đó: MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BMNC là hình thang cân