Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: G là trọng tâm của ΔBAC(gt)
mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)
\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)
Ta có: ΔABC cân tại A(cmt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
Ta có: M là trung điểm của BC(gt)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=6^2+8^2=100\)
hay AB=10(cm)
Vậy: AM=6cm; AB=10cm
a) Xét ΔABC có:
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
AM là đường phân giác ứng với cạnh BC(Gt)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
B A C E F O
a/ Giải thích thêm: Vì AB = AC (tam giác ABC cân tại A. Mà E là trung điểm AC;F là trung điểm AB => AF = BF = AE = EC)
Xét tam giác BAE và tam giác CAF có:
\(\hept{\begin{cases}\widehat{BAC}:chung\\AB=AC\left(gt\right)\\AE=AF\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta BAE=\Delta CAF\left(c.g.c\right)\)
\(\Rightarrow BE=CF\)
b/ Xét tam giác ABC có 2 đường trung tuyến BE;CF cắt nhau tại O
=> O là trọng tâm tam giác ABC
=> AO là đường trung tuyến thứ 3
=> AO đi qua trung điểm H của BC (Bạn bổ sung điểm H cho mình nhá - Cho dễ làm thôi)
Mà tam giác ABC cân tại A => AO vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow AO⊥BC\)tại H
c/ Vì H là trung điểm BC => HB = HC = BC:2 = 10 : 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
\(AH^2+BH^2=AB^2\left(pytago\right)\)
\(AH^2+5^2=13^2\)
\(\Rightarrow AH^2=13^2-5^2=169-25=144\)
\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)
Vì O là trọng tâm của tam giác ABC => \(OH=\frac{1}{3}AH\Rightarrow OH=\frac{1}{3}.12=4\left(cm\right)\)
Xét tam giác BOH vuông tại H có:
\(BH^2+OH^2=BO^2\left(pytago\right)\)
\(5^2+4^2=BO^2\)
\(25+16=BO^2\)
\(41=BO^2\)
\(\Rightarrow BO=\sqrt{41}\approx6,4\left(cm\right)\)
A B C E F M D N
a) Vì \(\Delta ABC\) cân tại A nên AB = AC và Góc B = Góc C. Vì \(BE\perp AC;CF\perp AB\left(gt\right)\)
Nên ^AFC = ^BFC = ^AEB = ^CEB = 900. Xét \(\Delta AFC\) và \(\Delta AEB\) có :
^AFC = ^AEB = 900; \(AC=AB\left(cmt\right)\); Góc O chung. \(\Rightarrow\Delta AFC=\Delta AEB\left(ch.gn\right)\)
b) \(\Rightarrow AF=AE\) ( 2 cạnh tương ứng ). Có ^AFC = ^AEB hay ^AFD = ^AED = 900
Xét \(\Delta AED\) và \(\Delta AFD\) có : ^AFD = ^AED = 900 ( cmt ) ; \(AF=AE\left(cmt\right);AD\) chung
\(\Rightarrow\Delta AED=\Delta AFD\left(ch.cgv\right)\Rightarrow\) ^EAD = ^FAD ( tương ứng ) nên AD là phân giác ^FAE ( đpcm )
c) Gọi giao điểm của AM và DE tại N. Xét \(\Delta AEN\) và \(\Delta AFN\) có :
\(AE=AF\left(cmt\right)\); ^EAN = ^FAN ( ^EAD = ^FAD ); \(AN\) chung.
\(\Rightarrow\Delta AEN=\Delta AFN\left(c.g.c\right)\Leftrightarrow\) ^ANE = ^ANF ( tương ứng ). Mà ^ANE + ^ANF = 1800 ( kề bù )
=> ^ANE = ^ANF = 1800 : 2 = 900 \(\Leftrightarrow AN\perp FE\). Mà N là giao điểm của AM và FE
Nên N thuộc AM \(\Rightarrow AN\perp FE\Leftrightarrow AM\perp FE\left(đpcm\right)\)
Ờ ! viết bằng nhau ''='' thật đấy, nhưng trên hình kí hiệu j đâu mà viết nó ''='' nhau
LOGIC ?
Cái deck j vại, bn nhìn thấy ^O ở đâu thế bn Minh !
Ý thức ko mua đc ''='' tiền.
a/
Ta có
\(\widehat{ABC}=\widehat{ACB}\) (2 góc ở đáy của tg cân ABC) (1)
\(\widehat{ABM}+\widehat{ABC}=\widehat{ACN}+\widehat{ACB}=180^o\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\) và \(\Delta ACN\) có
AB=AC (cạnh bên của tg cân ABC)
BM=CN (gt)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A
b/
Xét tg vuông BME và tg vuông CNF có
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\Rightarrow\widehat{AMN}=\widehat{ANM}\) (2 góc ở đáy của tg cân AMN)
BM=CN (gt)
\(\Rightarrow\Delta BME=\Delta CNF\) (Hai tg vuông có cạnh huyền và một góc nhọn tương ứng = nhau thì bằng nhau)
c/
Xét tg cân AMN có AM=AN (1)
\(\Delta BME=\Delta CNF\left(cmt\right)\Rightarrow ME=NF\) (2)
Từ (1) và (2) => AM-ME=AN-NF => AE=AF
Xét tg vuông AEO và tg vuông AFO có
AE=AF (cmt)
AO chung
\(\Rightarrow\Delta AEO=\Delta AFO\) (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau thì bằng nhau)
\(\Rightarrow\widehat{OAE}=\widehat{OAF}\) => AO là phân giác của \(\widehat{MAN}\)
d/
Ta có
\(\widehat{HMN}=\widehat{HMA}-\widehat{AMN}=90^o-\widehat{AMN}\)
\(\widehat{HNM}=\widehat{HNA}-\widehat{ANM}=90^o-\widehat{ANM}\)
Mà \(\widehat{AMN}=\widehat{ANM}\)
\(\Rightarrow\widehat{HMN}=\widehat{HNM}\Rightarrow\Delta HMN\) cân tại H
Ta có
\(OE\perp AM;HM\perp AM\)=> OE//HM \(\Rightarrow\widehat{AOE}=\widehat{AHM}\) (góc đồng vị)
Chứng minh tương tự ta cũng có OF//HN \(\Rightarrow\widehat{AOF}=\widehat{AHN}\) (góc đồng vị)
Mà \(\Delta AEO=\Delta AFO\Rightarrow\widehat{AOE}=\widehat{AF}\)
\(\Rightarrow\widehat{AHM}=\widehat{AHN}\)=> HO là phân giác của \(\widehat{MHN}\)
Xét tg cân HMN có
HO là phân giác của \(\widehat{MHN}\)=> HO là đường trung trực của tg HMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(HO\perp MN\) tại trung điểm của MN
Xét tg cân AMN có
AO là đường phân giác của \(\widehat{MAN}\) (cmt) => AO là đường trung trực của tg AMN (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường trung trực) => \(AO\perp MN\) tại trung điểm của MN
=> AO trung HO (Từ 1 điểm trên đường thẳng chỉ duy nhất dựng được 1 đường thẳng vuông góc với đường thẳng đã cho)
=> A; O; H thẳng hàng