Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC và HB=HC
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
c: ΔABM=ΔACM
=>MB=MC
d: Vì MB=MC
nên ΔMBC cân tại M
. + vì tam giác ABC là tam giác cân
=> AB=AC ( hai cạnh bên bằng nhau)
Lại có: vì góc AHC bằng 90o (gt) (1)
Mà: AHB+ AHC= 180o ( hai góc kề bù)
Từ (1) và (2) ta suy ra:
AHB= 90o và tam giác AHB là tam giác vuông
a) xét tam giác vuông ABH và tam giác ACH:
AB= AC ( cmt)
Và AHB= AHC= 90o ( cmt)
=> tam giác ABH= tam giác ACH( ch-gv)
Do đó: BH = CH ( hai cạnh tương ứng)
Vậy: H là trung điểm của BC ( đpcm)
( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘
CHÚC BẠN HỌC TỐT NHA!
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(AB=AC\)\((\Delta ABC\)cân \()\)
AH chung
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của BC
b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :
\(BM=CN\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )
mà \(\widehat{BMH}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{CNH}=90^o\)
\(\Rightarrow HN\perp AC\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
hình bạn tự vẽ nhé!!
a, Xét \(\Delta\)AHB và \(\Delta\)AHC
có \(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
AB =AC (\(\Delta\)ABC cân)
\(\widehat{ABC}=\widehat{ACB}\)(\(\Delta\)ABC cân)
=> \(\Delta AHB=\Delta AHC\)(ch-gn)
b, CM: \(\Delta AMH=\Delta NMB\)(c.g.c)
=> AH=BN (2 cạnh tương ứng)
c,CM: \(\Delta ABM=\Delta NHM\)(c.g.c)
=> \(\hept{\begin{cases}\widehat{BAM}=\widehat{HNM}\left(1\right)\\AB=NH\end{cases}}\)
Mà AB>AH(trong tam giác vuông cạnh huyền là cạch lớn nhất)
Từ dó => NH > AH
Xét \(\Delta AHN\)có NH>AH(cmt)
=> \(\widehat{MAH}>\widehat{HNM}\left(2\right)\)
Từ (1)(2)=> \(\widehat{BAM}< \widehat{MAH}\)
d,Vì AI là đg t tuyến của NC (3)
CM là đg t tuyến của AN
Mà AI cắt CM tại H
Từ đấy=> H là trọng tâm \(\Delta ACN\)
=> AH là đg t tuyến của NC (4)
Từ (3)(4)=> A , H , I thẳng hàng nhau
chúc bạn hk tốt !!(nhớ k cho mình nha!!@@)
B N A C I H M
a) Xét tam giác AHB và tam giác AHC có :
AB = AC ( ABC cân tại A )
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
Chung AH
\(\Rightarrow\) tam giác AHB = tam giác AHC ( ch-cgv )
b) Xét tam giác BMN và tam giác HMA có :
BM = MH
\(\widehat{BMN}=\widehat{AMH}\left(đđ\right)\)
AM = MN
\(\Rightarrow\)tam giác BMN = tam giác HMA ( c-g-c )
\(\Rightarrow AH=NB\)
c) từ 2 tam giác bằng nhau ở câu b \(\Rightarrow\widehat{MAH}=\widehat{MNB}\)(1)
Xét tam giác AHB vuông tại H có AB > AH ( cạnh huyền )
Mà AH = NB ( câu b )
\(\Rightarrow AB>BN\)
Xét tam giác ABN có AB > BN
\(\Rightarrow\widehat{MNB}>\widehat{BAM}\)( 2 )
Từ (1) và (2) suy ra \(\widehat{BAM}< \widehat{MAH}\)
d) Xét tam giác CBN có :
CH = HB
NI = IC
\(\Rightarrow\) HI là đường trung bình tam giác CBN
\(\Rightarrow\) HI // BN ( 3 )
Từ 2 tam giác bằng nhau ở câu b \(\Rightarrow\widehat{MBN}=\widehat{MHA}=90^o\)
Ta có \(BN\perp BH\)
\(AH\perp BH\)
\(\Rightarrow\) AH // BN ( 4 )
Từ (3) và (4) \(\Rightarrow\) A ; H ; I thẳng hàng
Vậy ...
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC
ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017
a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:
AH là cạnh chung
AB = AC ( \(\Delta ABC\)cân tại A)
BH = CH ( H là trung điểm của BC)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)
Xét \(\Delta ABC\)cân tại A ta có:
AH là đường trung tuyến ( H là trung điểm của BC)
\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)
\(\Rightarrow AH⊥BC\)tại H.
b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:
BH = CH ( H là trung điểm của BC)
\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)
\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)
c) Ta có:
AB = AC (\(\Delta ABC\)cân tại A)
BD = CE ( cmt)
\(\Rightarrow AB-BD=AC-CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)
Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Nên \(\widehat{ADE}=\widehat{ABC}\)
Mặt khác 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)DE // BC.
d) Nối A với I.
Ta có:
\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)
\(\Rightarrow HE=EN+ME\)
\(\Rightarrow HE=MN\)
Xét \(\Delta AEN\)vuông tại E ta có:
\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)
\(\Rightarrow AN^2=AD^2+HM^2\)
\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)
\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)
\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)
\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AI^2-NI^2\)
\(\Rightarrow AI^2=AN^2+NI^2\)
\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)
\(\Rightarrow IN⊥AN\)tại N.
Trả lời:
P/s: Xin lỗi nha!~Chỉ đc mỗi câu a!!!~
a) Theo giả thiết ta có :
AH là đường trung tuyến ⇒BH=HC⇒BH=HC
xét ΔAHBΔAHB và ΔAHCΔAHC có:
AB=ACAB=AC (gt)
AHAH chung
BH=HCBH=HC ( cmt)
⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )
~Học tốt!~
b , Ta có : HB +HC= Bc
mà : HB=HC (GT)
=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2
Ta có : \(\Delta ABH\)vuông tại H
=> \(AB^2\)= \(BH^2\)+ \(AH^2\)( Định lí Py-ta-go)
=> 62 = 22 + AH2
=> AH2 = 62 - 22
=> AH2 = 32
=> AH \(\approx\) 5,7 cm
a: Xét ΔHBA vuông tại H và ΔHCA vuông tại H có
AH chung
AB=AC
Do đó: ΔHBA=ΔHCA
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>góc MAB=góc MAC
c: ΔABM=ΔACM
nên MB=MC