K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

A B C D E H 1 2 3 4

GT tam giác ABC cân 

\(\widehat{A}< 90^o\)

\(BD\perp AC\left(D\in AC\right)\)

\(CE\perp AB\left(E\in AB\right)\)

BD và CE cắt nhau tại H

KL : BD = CD

tam giác BHC cân

AH là đường trung trực của BC

a) Xét tam giác BDC và tam giác CEB có

\(\widehat{BDC}=\widehat{CEB}=90^o\)

BC cạnh chung

\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )

=> tam giác BDC = tam giác CEB  (g-c-g)

=> BD = CE ( 2 cạnh tương ứng )

b) Vì tam giác ABC là tam giác cân

=> \(\widehat{B}=\widehat{C}\)

Vì \(\widehat{B}=\widehat{C}\)

=> tam giác BHC cân

c) Kẻ AH

chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v 

1 tháng 2 2019

Mình cần viết GT-KL 

27 tháng 1 2019

tu ve hinh : 

AH cat BC tai O
xet tamgiac HAB va tamgiac HAC co : 

BH = CH do tamgiac HBC can tai H (gt)

BA = CA do tamgiac ABD = tamgiac ACE (gt)

AH chung 

nen tamgiac HAB = tamgiac HAC  (c - c - c)

=> goc BAH = goc CAH (dn)               (1)

goc DAB = goc EAC (dd)                     (2)

goc DAB + goc DAH = goc BAH         (3)

goc CAE + goc EAH = goc EAC           (4)

(1)(2)(3)(4) => goc DAH = goc HAE                (5)

xet tamgiac DHA va tamgiac EHA co : goc HDA = goc HEA do CD | BH va BE | CH (gt)          (6)

AH chung            (7)

(5)(6)(7) => tamgiac DHA = tamgiac EHA (ch - gn)

=> goc OHB = goc OHC (dn)         (8)

tamgiac HBC can tai H => BH = HC va goc HBO = goc HCO         (9)

(8)(9) => tamgiac HBO = tamgiac HCO (g - c - g)

=> goc HOB = goc HOC (dn)  va OB = OC (dn)

goc HOB + goc HOC = 180 do (kb)

=> HOC = 90 do => AH  |  BC (dn) 

=> AH la trung truc cua BC

3 tháng 7 2018

a, Xét ∆ ABD và ∆ ACE có:

Góc D = góc E = 90°

AB = AC (∆ ABC cân)

Góc BAC chung

➡️∆ ABD = ∆ ACE (ch-gn)

➡️AD = AE (2 cạnh t/ư)

b,  ✳️C/m AH là tia phân giác của góc BAC

Xét∆ ABC cân tại A có: 

BD vuông góc với AC

CE vuông góc với AB

H là giao điểm của BD và CE 

➡️H là trực tâm ∆ ABC

➡️AH vuông góc với BC

mà ∆ ABC cân tại A

➡️AH là đg cao đồng thời là đg phân giác

➡️AH là p/g góc BAC(đpcm)

 ✳️C/m AH là đg trung trực của ED

Xét ∆ AED cân tại A (AD = AE)

➡️AH là đg phân giác đồng thời là đg trung trực

 ➡️AH là đg trung trực của ED (đpcm)

c, Xét ∆ AEH và ∆ ADH có:

AE = AD (cmt)

Góc BAH = góc CAH (cmt)

AH chung

 ➡️∆ AEH = ∆ ADH (c.g.c)

➡️HE = HD (2 cạnh t/ư)

Xét ∆ CDH vuông tại D

➡️CH > HD

mà HE = HD (cmt)

➡️CH > HE 

Còn câu d để mk nghĩ đã nhé

4 tháng 7 2018

Câu d nè bn.

d, Vì AH là đg trung trực của EF và AH vuông góc với BC

➡️ED // BC (quan hệ từ vuông góc đến song song)

Ta có: góc FED = góc DBC (2 góc có 2 cạnh tương ứng song song)

Gọi AH giao BC tại M

Xét ∆ ABC cân tại A

➡️AH là đg cao đồng thời là trung tuyến

HM là trung tuyến của BC

Xét ∆ IBC có HM là đg cao đồng thời là trung tuyến

➡️∆ IBC cân tại I

 ➡️Góc DBC = góc ECB

Mà góc ECB = góc DEC (2 góc so le trong)

➡️Góc DEC = góc DBC 

mà góc DBC = góc FED (cmt)

➡️Góc FED = góc DEC

➡️ED là tia phân giác góc FEC

Xét ∆ FEC có: CI là phân giác góc DCE (gt)

                         EI là phân giác góc FEC (cmt)

                         CI và EI giao nhau tại I

 ➡️I là tâm đg tròn nội tiếp∆ FEC

➡️FI là phân giác góc CFE

mà góc CFE vuông (EF // BD, góc BDC = 90°)

➡️Góc EFI = góc CFI = 90° ÷ 2 = 45°

Vậy góc EFI = 45°

Hok tốt nhé~

9 tháng 3 2021

a) Vì Bˆ=Cˆ(gt)B^=C^(gt)

Mà BD,CE là tia phân giác của BˆB^ và CˆC^

=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^

Xét ΔBCD và ΔCBE có:

         Bˆ=Cˆ(gt)B^=C^(gt)

         BC: cạnh chung

        DBCˆ=ECBˆDBC^=ECB^(gt)

=>ΔBCD=ΔCBE(g.c.g)

b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)

=>ΔOBC cân tại O

=>OB=OC

c) xét 2 tam giác EOB và DOC có:

góc EOB=góc DOC(đối đỉnh)

OB=OC

góc EBO=góc DOC(chứng minh ở phần  a )

=> 2 tam giác EOB=DOC(g.c.c)

=> OE=OD(2 cạnh tương ứng)

=> góc BEO =góc CDO(2 góc tương ứng)

góc BEO+góc OEK=180độ(kề bù)

góc CDO+góc ODH=180độ(kề bù )

=> góc OEK=góc ODH

xét 2 tam giác OKE và OHD có:

góc OKE=góc OHD(=90độ)

cạnh OE=OD(chứng minh trên)

góc OEK=góc ODH(chứng minh trên )

=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)

=> OK=OH(2 cạnh tương ứng)

28 tháng 3 2020

a, Vì △ABC cân tại A => AB = AC

Xét △ABD vuông tại D và △ACE vuông tại E

Có: BAC là góc chung

       AB = AC (cmt)

=> △ABD = △ACE (ch-gn)

c, Ta có: AE + BE = AB và AD + DC = AC

Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE) 

=> BE = DC

Xét △HEB vuông tại E và △HDC vuông tại D

Có: BE = DC (cmt)

       EBH = DCH (△ABD = △ACE)

=> △HEB = △HDC (cgv-gnk)

=> BH = HC (2 cạnh tương ứng)

=> △BHC cân tại H

c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2 

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2

=> AED = ABC 

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

d, Xét △BAH và △CAH

Có: AB = AC (cmt)

    ABH = ACH (cmt)

    AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BAH = CAH (2 góc tương ứng)

Xét △ABK và △ACK

Có: AB = AC (cmt)

    BAK = CAK (cmt)

   AK là cạnh chung

=> △ABK = △ACK (c.g.c)

=> BK = CK (2 cạnh tương ứng)

Xét △BHK và CMK

Có: HK = MK (gt)

     HKB = MKC (2 góc đối đỉnh)

        BK = CK (cmt)

=> △BHK = △CMK (c.g.c)

=> HBK = MCK (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong 

=> BH // MC (dhnb)

=> BD // MC (H \in BD)

Mà BD ⊥ AC (gt)

=> MC ⊥ AC (từ vuông góc song song)

=> ACM = 90o

=> △ACM vuông tại C

28 tháng 3 2020

1 cách khác cho câu d

d, làm giống đoạn đầu cho đến HBK = MCK (2 góc tương ứng) => DBC = BCM

Xét △BDC vuông tại D có: DBC + DCB = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> BCM + ACB = 90o  => ACM = 90o => △ACM vuông tại C

28 tháng 1 2018

Nhật Tân

Thứ 6, ngày 06/01/2017 14:54:35

Cho tam giác ABC cân tại A,góc A = 90 độ,Các đường trung trực của AB AC cắt nhau tại O,Chứng minh AO là phân giác của góc A,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC,Chứng minh AK là phân giác của góc A,BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H,Chứng minh bốn điểm A O K H thẳng hàng,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

p/s: kham khảo