Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ABD\) và \(\Delta KBD\)
AB=BK (gt); BD chung
\(\widehat{ABD}=\widehat{KBD}\) (gt)
\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)
b/
\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)
\(AH\perp BC\left(gt\right)\)
=> AH//DK (cùng vuông góc với BC)
c/
Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có
\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\) (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)
Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)
=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)
=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng
Hình bạn tự vẽ nhé
a] Ta có AM=BM = \(\frac{1}{2}\) AB
AN = CN = \(\frac{1}{2}\) AC
mà AB = AC [ vì tam giác ABC cân tại A ]
\(\Rightarrow\) AM = BM = AN = CN [ * ]
Xét tam giác ABN và tam giác ACM có ;
AN = AM [ theo * ]
góc A chung
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác ABN = tam giác ACM [ c.g.c ]
b] Xét tam giác ANG và tam giác CNK có ;
NG = NK [ gt ]
góc ANG = góc CNK [ đối đỉnh ]
AN = CN [ theo * ]
Do đó ; tam giác ANG = tam giác CNK [ c.g.c ]
\(\Rightarrow\)góc AGN = góc CKN [ góc tương ứng ]
mà chúng ở vị trí so le trong
\(\Rightarrow\) AG // CK
c]Vì M , N lần lượt là trung điểm của AB , AC nên
BN , CM lần lượt là trung tuyến của AC , AB
mà G là giao điểm của BN , CM
\(\Rightarrow\) G là trọng tâm của tam giác ABC
\(\Rightarrow\) GN = \(\frac{1}{2}\) BG [ 1 ]
Ta có ; NG = NK [ gt ]
\(\Rightarrow\) NG = \(\frac{1}{2}\) GK [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ; BG = GK
\(\Rightarrow\) G là trung điểm của BK
d]Ta có định lí ; Trong một tam giác cân đường trung tuyến nối từ đỉnh cân vừa là đường trung trực vừa là đường cao , đường phân giác của tam giác đó [ định lí sgk toán lớp 7 tập 2 ]
\(\Rightarrow\) AG là đường cao của tam giác ABC
\(\Rightarrow\) AG vuông góc với BC .
Chúc bạn học tốt , chọn k đúng cho mình nhé
Nhớ kết bạn với mình đó
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.