Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A
⇒\(\widehat{C}\)=30
MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180
⇒\(\widehat{A}\) + 30+30=180
⇒\(\widehat{A}\)=180-30-30
⇒\(\widehat{A}\)=120
xÉT ΔAHB vuông tại H, ΔAHC vuông tại H
CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)
\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)
⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)
⇒\(\widehat{BAH}=\widehat{CAH}\)
C.TRONG TAM GIÁC AHC VUÔNG TẠI H
⇒\(AC^2=HC^2+AH^2\)
⇒\(AC^2\)=\(4^2\)+\(3^2\)
⇒\(AC^2\)=16+9
AC=\(\sqrt{25}\)=5CM
D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F
CÓ: AH : CẠNH HUYỀN CHUNG
\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)
⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)
⇒HE=HF (2 CẠNH TƯƠNG ỨNG)
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
A B C D E H
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB=AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB=HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b/ Ta có :HB=HC( cmt)
=> H trung điểm BC
Ta có: HB=HC=BC/2=8/2=4 (cm)
Xét tam giác ABH vuông tại H
Có AB^2= AH^2+HB^2 (pytago)
=>AH^2= AB^2-HB^2
AH^2= 5^2-4^2
AH^2=25-16
AH^2=9
AH= căng 9
=> AH= 3cm
Vậy AH=3cm
c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)
Có: AH chung
Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)
=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)
=> AD=AE ( 2 cạnh tương ứng)
=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)
Xét tam giác ABC cân tại A(gt)
Có: Góc B= (180 độ - góc A)/2 (định lí)
Xét tam giác ADE cân tại A (cmt)
Có: Góc D= (180 độ - góc A)/2 (định lí)
=> Góc B= Góc D ( =(180 độ - góc A)/2)
=> DE//BC ( 2 góc đồng vị bằng nhau)
:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
DH =EH
dpcm
Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
DH =EH
dpcm
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
d) Xét ΔHEB vuông tại E và ΔHFC vuông tại F có
HB=HC(ΔABH=ΔACH)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔHEB=ΔHFC(Cạnh huyền-góc nhọn)
Suy ra: HE=HF(Hai cạnh tương ứng)