K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Xét tam giác ABC ta có

M,N là trung điểm AB,AC (gt)

=> MN là đường trung bình tam giác ABC

=> MN//BC . MN=1/2 BC

-> BMNC là hình thang

Xét hình thang BMNC ta có

góc B= Góc C( tam giác ABC cân tại A)

-> BMNC là hình thang cân

b) Xét tam giác ABC cân tại A ta có

AH là đường cao (gt)

-> AH là đường trung tuyến

-> H là trung diểm BC

cm HN là đường trung bình tam giác ABC

-> HN // AB. HN=1/2 AB

mà AM =1/2 AB ( M là trung điểm AB)

nên HN=AM

Xét tứ giác AMHN ta có

AM// HN ( HN//AB, M thuộc AB)

AN=HN (cmt)

-> tứ giác AMHN là hình hình hành

mà AH là tia phấn giác góc NAM ( AH là đường cao tam giác ABC cân tại A)

nên hbh AMHN là h thoi

c) Xét tứ giác AHCK ta có

AC và HK cắt nhau tại N

N là trung diểm AC (gt)

N là trung điểm HK ( K la điểm dx của H qua N)

-> AHCK là hình bình hành

mà góc AHC =90 ( AH là đường cao tam giác ABC)

nên hbh AHCK là hình chữ nhật

a: Xét ΔABC có 

AM/AB=AN/AC

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

c: Xét tứ giác ADCB có 

N là trung điểm của AC

N là trung điểm của BD

Do đó: ADCB là hình bình hành

15 tháng 11 2021

đề sai

15 tháng 11 2021

a/ Ta có: EM = MH (E đối xứng với H qua M);

AM = MB (M là trung điểm AB)

H = 900 (AH vuông góc với BC)

=> AHBE là hình chữ nhật

b/ Vì AHBE là hình chữ nhật

=> AE = BH và AE // BH

Mà tam giác ABC cân; AH là đường cao

=> BH = HC

=> AE = HC; AE // HC

=> AEHC là hình bình hành.

c/ Ta có: N là trung điểm AC; M là trung điểm AB => MN là đường trung bình

=> MN // BC mà AH vuông góc BC

=> AH vuông góc MN => AH cắt MN (1)

Mà AEHC là hình bình hành

=> AH cắt CE (hai đường chéo) (2)

Từ (1) và (2) => AH,CE,MN đồng quy

d/ Gọi AH, CE, MN đồng quy tại O

HI // AB cắt CE tại I

Xét hai tam giác AKO và HIO:

=> t/gAKO = t/gHIO

=> AK = HI

HI là đường TB của t/g CKB => HI = 1/2 CK

=> AK = 1/2 CK hay 3AK = AB

hình tự vẽ

7 tháng 9 2021

a, Xét tứ giác AHCK có:

I là trung điểm KH

I là trung điểm AC

Nên tứ giác AHCK là hình bình hành

Lại có: góc H=90 độ do AH là đường cao của tam giác ABC

Vậy tứ giác AHCK là hình chữ nhật

b, Xét tứ giác ABHK có:

AK//CH do H thuộc CB và CH//AK

KA=HB do AK=CH mà AH là đường cao của tam giác cân nên H là trung điểm BC và KA=CH

Vậy tứ giác ABHK là hình bình hành

Câu c Δabc vuông cân thì ahck là hv ( câu này neeus sai thông cmr mk nha câu c này mk làm đại)

19 tháng 12 2022

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đo: AMCK là hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

=>AB=MK

c: Để AMCK là hìh vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

d: P=(5+5+6)/2=8

\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)