K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó;ΔABM=ΔACN

Suy ra: \(\widehat{M}=\widehat{N}\)

Xét ΔEBM vuông tại E và ΔFCN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔEBM=ΔFCN

Suy ra: \(\widehat{EBM}=\widehat{FCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

và HB=HC

nên A,H,I thẳng hàng

2 tháng 2 2019

A B C M N 1 2 2 1 E F 1 1 2 2 O

CM : a) Ta có: t/giác ABC cân tại A

=> góc B2 = góc C2

Mà góc B1 + góc B2 = 1800

       góc C1 + góc C2 = 1800

=> góc B1 = góc C1

Xét t/giác AMB và t/giác ANC

có AB = AC (gt)

  góc B1 = góc C1 (cmt)

  MB = NC (gt)

=> t/giác AMB = t/giác ANC (c.g.c)

=> AM = AN (hai cạnh tương ứng)

=> t/giác AMN là t/giác cân tại A

b) Ta có: t/giác AMN cân tại A

=> góc M = góc N

Xét t/giác BME và t/giác CNF 

có góc E1 = góc F1 = 900 (gt)

  BM = CN (gt)

  góc M = góc N (cmt)

=> t/giác BME = t/giác CNF (cạnh huyền - góc nhọn)

c,d) tự làm

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó:ΔABM=ΔACN

b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có

MB=NC

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHMB=ΔKNC

Suy ra: BH=CK

c: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

BH=CK

Do đó:ΔABH=ΔACK

Suy ra:  AH=AK

Xét ΔAMN có AH/AM=AK/AN

nên HK//MN

hay HK//BC

d: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2022

Cám ơn nhiều ạ!

3 tháng 4 2020

Hình tự kẻ nha

a)Xét 2 tam giác vuông ABH và ACH có

 Góc AHB = góc AHC (=90°)

 AB= AC ( tam giác ABC cân tại A)

 Góc ABC = góc ACB (tam giác ABC cân tại A)

=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)

b)Tam giác ABC cân =>góc ABC=gócACB

=>gócABM=gócACN

Xét 2 tam giác ABM và ACN

AB=AC ( tam giác ABC cân tại A)

Góc ABM=góc ACN (cmt)

BM=CN(gt)

=> tam giác ABM=tam giác ACN

=>AM=AN

Do đó tam giác AMN cân tại A

c) Phần này hình như sai đề

3 tháng 4 2020

A B C M N H E F K 1 2 1 1 2 3 3 2

a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

    \(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)

   \(\widehat{B_1}=\widehat{C_1}\) (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)

      \(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)

Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  \(\widehat{ABM}=\widehat{ACN}\) (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (2 cạnh t/ứng)

=> t/giác AMN cân

c) Ta có: t/giác  MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)

    t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)

Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh)       (2)

Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K

                      có KH là đường cao

  => KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)

(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH =>  BH = CH => KH là đường trung trực)

t/giác ABH = t/giác ACH (cm câu a) =>  BH = CH 

=> AH là đường trung tuyến

mà AH cũng là đường cao 

=> AH là đường trung trực của cạnh BC (4)

Do A \(\ne\)K (5)

Từ (3); (4); (5) => A, H, K thẳng hàng

28 tháng 1 2022

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

28 tháng 1 2022

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

26 tháng 2 2020

a, Xét △BAH vuông tại H và △CAH vuông tại H

Có: AH là cạnh chung

       AB = AC (gt)

=> △BAH = △CAH (ch-cgv)

=> BH = CH (2 cạnh tương ứng)

Mà H nằm giữa B, C

=> H là trung điểm BC

Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2  

=> AH2 = 102 - 62 

=> AH2 = 64

=> AH = 8 (cm)

b, Ta có: MH = MB + BH và HN = HC + CN

Mà BH = HC (cmt) ; MB = CN (gt)

=> MH = HN

Xét △MHA vuông tại H và △NHA vuông tại H

Có: AH là cạnh chung

      MH = HN (cmt)

=> △MHA = △NHA (2cgv)

=> HMA = HNA (2 góc tương ứng)

Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A

c, Xét △MBE vuông tại E và △NCF vuông tại F

Có: EMB = FNC (cmt)

      MB = CN (gt)

=> △MBE = △NCF (ch-gn)

=> MBE = NCF (2 góc tương ứng)

d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)

=> AH là phân giác của MAN

Ta có: AE + EM = AM và AF + FN = AN 

Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)

=> AE = AF

Xét △EAK vuông tại E và △FAK vuông tại F

Có: AK là cạnh chung

       AE = AF (cmt)

=> △EAK = △FAK (ch-cgv)

=> EAK = FAK (2 góc tương ứng)

=> AK là phân giác EAF => AK là phân giác MAN

Mà AH là phân giác của MAN

=> AK ≡ AH 

=> 3 điểm A, H, K thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: Xét ΔABM và ΔACN có

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN và góc M=góc N

=>góc EBM=góc FCN

=>góc IBC=góc ICB

=>IB=IC

=>I nằm trên trung trực của BC

=>A,H,I thẳng hàng

3 tháng 9 2017