Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì ad là trung tuyến của tam giác ABC => BC=CD
b) vì AD là trung điểm của tam giác ABC
=> BD=DC=BC/2=10/2=5
Ta có: AD^2=AB^2-BD^2
=>AD^2=144
=>AD=12
Vậy AD = 12cm
MÀ DG=1/3AD
=> DG=1/3*12=4
Vậy DG=4cm
c) Vì tam giác ABC là tam giác cân mà G là trọng tâm của tam giác ABC => A,D,G thẳng hàng
d)( mik cx ko chắc cko lắm)
Ta có: AD=12cm mà DF=DA=>DF=12cm
BD= 5cm
Vì 12cm<5cm
=> BD<CF hay CF>BD
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG
a: BD=CD=6cm
=>AD=8cm
b: Ta có: ΔABC cân tại A
mà AD là đường cao
nên Dlà trung điểm của BC
=>A,G,D thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
Do đó: ΔABG=ΔACG
A B C G D
a. xét tgiac ADC và tgiac ADB có
AD là cạnh chung
góc DAB = góc DAC(gt)
AB=AC(gt)
vậy tg ADC=tg ADB(c.g.c)
b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)
nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng
c. ta có BD=\(\frac{BC}{2}\)= 5cm
theo tính chất trong tam giác cân ta có Ad là đường trung tuyến ứng với đỉnh cân nên AD cũng là đường cao
áp dụng định lý pytago vào tamgiac vuông ADB có
\(^{^{ }AD^2}\)=\(^{^{ }AB^2}\)- \(^{^{ }BC^2}\)
\(^{^{ }AD^2}\)=\(^{^{ }13^2}\)-\(^{^{ }5^2}\)
\(^{^{ }AD^2}\)=144
\(^{^{ }AD^{ }}\)=12
ta lại có DG= \(\frac{1}{3}\)AD=\(\frac{1}{3}\) .12=4cm