Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì ΔABC cân tại A nên ta có :
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng số đo ba góc trong 1 tam giác)
\(\Rightarrow\widehat{A}+55^o+55^o=180^o\)
\(\Rightarrow\widehat{A}=180^o-55^o-55^o=70^o\)
vậy \(\widehat{A}\) có số đo là 70o
b) xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (vì M là trung điểm của BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^o}{2}=90^o\)
⇒ AM ⊥ BC
a)
Sửa đề: ΔBIM=ΔCKM
Xét ΔBIM vuông tại I và ΔCKM vuông tại K có
BM=CM(M là trung điểm của BC)
\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
Bạn tự vẽ hình nha!
a.
Xét tam giác ABM và tam giác ACM có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BM = CM (AM là trung tuyến của tam giác ABC)
=> Tam giác ABM = Tam giác ACM (c.g.c)
b.
Tam giác ABM = Tam giác ACM (theo câu a)
=> M1 = M2 (2 góc tương ứng)
mà M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 180/2 = 90
=> AM _I_ BC
( Cái này bạn chứng minh theo cách: AM là trung tuyến của tam giác ABC cân tại A nên AM là đường trung trực của tam giác ABC cũng được. Tại mình sợ bạn chưa học tới)
BM = CM = BC/2 (AM là trung tuyến của tam giác ABC)
=> BM = CM = 10/2 = 5
Áp dụng định lí Pytago vào tam giác ABM vuông tại A ta có:
AB^2 = BM^2 + AM^2
13^2 = 5^2 + AM^2
AM^2 = 169 - 25
AM = 12
Ta có: AG = 2/3 AM (tính chất trọng tâm)
=> AG = 2/3 . 12
AG = 8
a. Áp dụng định lí tổng ba góc trong một tam giác vào tam giác ABC:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\\ \widehat{A}+\widehat{A}+30^o+\widehat{A}+30^o=180^o\\ 3\widehat{A}=180^o-60^o=120^o\\\Rightarrow \widehat{A}=40^o\)
b. Vì M là trung điểm của BC nên suy ra \(AM\perp BC\) và \(CM=MB=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác AMB, ta có:
\(AM^2+MB^2=AB^2\\ \Rightarrow AM=\sqrt{AB^2-MB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
Vậy \(AM=8\left(cm\right)\)