K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

a. Áp dụng định lí tổng ba góc trong một tam giác vào tam giác ABC:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\\ \widehat{A}+\widehat{A}+30^o+\widehat{A}+30^o=180^o\\ 3\widehat{A}=180^o-60^o=120^o\\\Rightarrow \widehat{A}=40^o\)

13 tháng 3 2020

b. Vì M là trung điểm của BC nên suy ra \(AM\perp BC\)\(CM=MB=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác AMB, ta có:

\(AM^2+MB^2=AB^2\\ \Rightarrow AM=\sqrt{AB^2-MB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

Vậy \(AM=8\left(cm\right)\)

5 tháng 3 2023

a) vì ΔABC cân tại A nên ta có : 

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng số đo ba góc trong 1 tam giác)

\(\Rightarrow\widehat{A}+55^o+55^o=180^o\)

\(\Rightarrow\widehat{A}=180^o-55^o-55^o=70^o\)

vậy \(\widehat{A}\) có số đo là 70o

b) xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (vì M là trung điểm của BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^o}{2}=90^o\) 

⇒ AM ⊥ BC

a)

Sửa đề: ΔBIM=ΔCKM

Xét ΔBIM vuông tại I và ΔCKM vuông tại K có

BM=CM(M là trung điểm của BC)

\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)

18 tháng 3 2021

Giải cả bài giúp  vs ạ

5 tháng 5 2021

mai mik thi rồi mik cần gấp lắm giúp mik nha

 

a) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))

AH chung

Do đó: ΔABH=ΔACH(c-g-c)

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc với BC

d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

Do đó: ΔAHM=ΔAKM

=>AH=AK

16 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Xét tam giác ABM và tam giác ACM có:

AB = AC (tam giác ABC cân tại A)

B = C (tam giác ABC cân tại A)

BM = CM (AM là trung tuyến của tam giác ABC)

=> Tam giác ABM = Tam giác ACM (c.g.c)

b.

Tam giác ABM = Tam giác ACM (theo câu a)

=> M1 = M2 (2 góc tương ứng)

mà M1 + M2 = 180 (2 góc kề bù)

=> M1 = M2 = 180/2 = 90

=> AM _I_ BC

( Cái này bạn chứng minh theo cách: AM là trung tuyến của tam giác ABC cân tại A nên AM là đường trung trực của tam giác ABC cũng được. Tại mình sợ bạn chưa học tới)

BM = CM = BC/2 (AM là trung tuyến của tam giác ABC)

=> BM = CM = 10/2 = 5

Áp dụng định lí Pytago vào tam giác ABM vuông tại A ta có:

AB^2 = BM^2 + AM^2

13^2 = 5^2 + AM^2

AM^2 = 169 - 25

AM = 12

Ta có: AG = 2/3 AM (tính chất trọng tâm)

=> AG = 2/3 . 12

AG = 8